StudierendeLehrende

Genetic Engineering Techniques

Genetische Ingenieurtechniken sind Methoden, die es Wissenschaftlern ermöglichen, das genetische Material von Organismen gezielt zu verändern. Diese Techniken umfassen unter anderem CRISPR-Cas9, eine revolutionäre Methode, die präzise Veränderungen im DNA-Strang ermöglicht, indem spezifische Gene geschnitten und bearbeitet werden. Ein weiteres Verfahren ist die Gentechnische Transformation, bei der Gene in Zellen eingeführt werden, um neue Eigenschaften zu erzeugen. Transgene Organismen werden häufig in der Landwirtschaft verwendet, um Pflanzen resistent gegen Schädlinge oder Krankheiten zu machen. Die Anwendungen dieser Technologien sind vielfältig und reichen von der Medizin, wo sie zur Entwicklung von Gentherapien eingesetzt werden, bis hin zur Industrie, wo sie zur Herstellung von Bioprodukten dienen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Phasenfeldmodellierung

Phase Field Modeling ist eine numerische Methode zur Beschreibung und Simulation von Phasenübergängen in Materialien, wie z.B. dem Erstarren oder der Kristallisation. Diese Technik verwendet ein kontinuierliches Feld, das als Phase-Feld bezeichnet wird, um die verschiedenen Zustände eines Materials darzustellen, wobei unterschiedliche Werte des Phase-Feldes verschiedenen Phasen entsprechen. Die Dynamik des Phase-Feldes wird durch partielle Differentialgleichungen beschrieben, die oft auf der thermodynamischen Energie basieren.

Ein typisches Beispiel ist die Gibbs freie Energie GGG, die in Abhängigkeit vom Phase-Feld ϕ\phiϕ formuliert werden kann, um die Stabilität der Phasen zu analysieren:

G=∫(f(ϕ)+12K∣∇ϕ∣2)dVG = \int \left( f(\phi) + \frac{1}{2} K \left| \nabla \phi \right|^2 \right) dVG=∫(f(ϕ)+21​K∣∇ϕ∣2)dV

Hierbei steht f(ϕ)f(\phi)f(ϕ) für die Energie pro Volumeneinheit und KKK ist eine Konstante, die die Oberflächenenergie beschreibt. Phase Field Modeling findet Anwendung in verschiedenen Bereichen, darunter Materialwissenschaften, Biologie und Geophysik, um komplexe mikrostrukturelle Veränderungen über Zeit zu verstehen und vorherzusagen.

Protein-Kristallographie-Optimierung

Die Protein-Kristallographie-Refinement ist ein entscheidender Schritt in der strukturellen Biologie, der darauf abzielt, die Qualität und Genauigkeit der aus Kristallstrukturdaten gewonnenen Modelle zu verbessern. Nach der ersten Lösung der Struktur wird ein anfängliches Modell erstellt, das dann durch verschiedene Refinement-Techniken optimiert wird. Dabei werden die Unterschiede zwischen den experimentell beobachteten und den berechneten Röntgenbeugungsmustern minimiert. Dies geschieht häufig durch die Anpassung von Atomen, die Verbesserung der Geometrie und die Minimierung von Energie. Typische Verfahren sind das Least Squares Refinement, bei dem der Unterschied zwischen den beobachteten und vorhergesagten Intensitäten minimiert wird, sowie die Verwendung von B-Faktoren, um die thermische Bewegung von Atomen zu berücksichtigen. Letztendlich resultiert dieser Prozess in einer verfeinerten Struktur, die ein genaueres Bild der räumlichen Anordnung von Atomen im Protein vermittelt.

Lucas-Kritik der rationalen Erwartungen

Die Lucas-Kritik, benannt nach dem Ökonomen Robert Lucas, stellt die Annahmen in Frage, die hinter der Anwendung von ökonometrischen Modellen zur Analyse der Auswirkungen von politischen Maßnahmen auf die Wirtschaft stehen. Laut der Kritik ist es nicht ausreichend, historische Daten zu verwenden, um die Auswirkungen von Änderungen in der Wirtschaftspolitik zu bewerten, da diese Modelle oft nicht die Erwartungen der Wirtschaftssubjekte berücksichtigen. Wenn sich die Politik ändert, passen sich die Erwartungen der Menschen an die neuen Rahmenbedingungen an, was zu unterschiedlichen Ergebnissen führt als von den Modellen vorhergesagt.

Die Rationalität der Erwartungen bedeutet, dass Wirtschaftssubjekte alle verfügbaren Informationen nutzen, um ihre zukünftigen Entscheidungen zu treffen. Daher ist es wichtig, dass ökonomische Modelle die Reaktionen der Akteure auf Politikänderungen adäquat abbilden, um zu realistischen Vorhersagen zu gelangen. Zusammenfassend lässt sich sagen, dass die Lucas-Kritik die Notwendigkeit betont, dynamische Modelle zu entwickeln, die auf rationalen Erwartungen basieren, um die tatsächlichen Auswirkungen von wirtschaftspolitischen Interventionen besser zu verstehen.

Verhandlung-Nash

Der Begriff Bargaining Nash bezieht sich auf das Konzept des Verhandelns in der Spieltheorie, das von John Nash entwickelt wurde. Es beschreibt die Bedingungen, unter denen zwei oder mehr Parteien einvernehmlich zu einer Lösung gelangen, die für alle Beteiligten vorteilhaft ist. In diesem Kontext wird oft das sogenannte Nash-Gleichgewicht verwendet, das eine Situation beschreibt, in der kein Spieler einen Anreiz hat, seine Strategie einseitig zu ändern, da dies zu einem schlechteren Ergebnis führen würde.

Ein zentrales Element ist die Effizienz, die sicherstellt, dass keine weiteren Gewinne mehr erzielt werden können, ohne dass jemand anders schlechter gestellt wird. Die Verhandlungsposition der Parteien wird dabei durch ihre Ausscheidungspunkte bestimmt, also die Ergebnisse, die sie im Falle eines Scheiterns der Verhandlungen erzielen könnten. Das Nash-Verhandlungstheorem zeigt, dass unter bestimmten Bedingungen die Verhandlungslösungen stabil sind und dass die Parteien rational handeln, um ihre Nutzenmaximierung zu erreichen.

CNN-Schichten

Convolutional Neural Networks (CNNs) bestehen aus mehreren Schichten (Layers), die speziell für die Verarbeitung von Bilddaten entwickelt wurden. Die grundlegenden Schichten in einem CNN sind:

  1. Convolutional Layer: Diese Schicht extrahiert Merkmale aus den Eingabedaten durch Anwendung von Faltung (Convolution) mit Filtern oder Kernen. Der mathematische Prozess kann als Y=X∗W+bY = X * W + bY=X∗W+b dargestellt werden, wobei YYY das Ergebnis, XXX die Eingabe, WWW die Filter und bbb der Bias ist.

  2. Activation Layer: Nach der Faltung wird in der Regel eine Aktivierungsfunktion wie die ReLU (Rectified Linear Unit) angewendet, um nicht-lineare Eigenschaften in die Ausgaben einzuführen. Die ReLU-Funktion wird definiert als f(x)=max⁡(0,x)f(x) = \max(0, x)f(x)=max(0,x).

  3. Pooling Layer: Diese Schicht reduziert die Dimensionalität der Daten und extrahiert die wichtigsten Merkmale, um die Rechenlast zu verringern. Häufig verwendete Pooling-Methoden sind Max-Pooling und Average-Pooling.

  4. Fully Connected Layer: Am Ende des Netzwerks werden die extrahierten Merkmale in eine vollständig verbundene Schicht eingespeist, die für die Klassifizierung oder Regression der Daten verantwortlich ist. Hierbei

Eulersche Summationsformel

Die Euler'sche Summationsformel ist ein bedeutendes Resultat in der Zahlentheorie und Analysis, das eine Verbindung zwischen Summen und Integralen herstellt. Sie gibt an, wie man eine endliche Summe von Werten einer Funktion f(n)f(n)f(n) durch ein Integral und Korrekturterme annähern kann. Formal wird sie oft in der folgenden Form dargestellt:

∑n=abf(n)∼∫abf(x) dx+f(a)+f(b)2\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x) \, dx + \frac{f(a) + f(b)}{2}n=a∑b​f(n)∼∫ab​f(x)dx+2f(a)+f(b)​

Hierbei ist der Ausdruck ∼\sim∼ die asymptotische Gleichheit, was bedeutet, dass die Differenz zwischen der Summe und dem Integral im Grenzwert gegen Null geht, wenn aaa und bbb groß werden. Die Formel zeigt, dass die Summe einer Funktion über natürliche Zahlen in der Nähe des Integrals ihrer kontinuierlichen Entsprechung liegt, ergänzt durch einen Mittelwert der Funktionswerte an den Grenzen. Diese Beziehung ist besonders nützlich in der Analysis und bei der Untersuchung von Reihen, da sie oft die Berechnung von Summen vereinfacht und die Analyse von Wachstumseigenschaften von Funktionen erleichtert.