Die Physik von organischen Feldeffekttransistoren (OFETs) befasst sich mit der Funktionsweise von Transistoren, die aus organischen Materialien bestehen, typischerweise konjugierten Polymeren oder kleinen Molekülen. Im Gegensatz zu herkömmlichen Siliziumtransistoren nutzen OFETs die elektronischen Eigenschaften organischer Halbleiter, die es ermöglichen, dass elektrische Ladungen durch die Bewegung von Elektronen oder Löchern in einem organischen Material geleitet werden.
Die Funktionsweise eines OFETs basiert auf dem Prinzip der Feldeffektsteuerung, bei dem eine elektrische Spannung am Gate des Transistors eine Ladungsträgerkanal im organischen Material erzeugt oder modifiziert. Dieser Kanal ermöglicht es, die Stromstärke zwischen Source und Drain zu steuern. Die Leistung und Effizienz dieser Transistoren hängen stark von der Qualität des organischen Materials, der Struktur der Moleküle und der Schnittstellen zwischen organischen und anorganischen Materialien ab.
Ein zentrales Konzept in der OFET-Physik ist die Mobilität der Ladungsträger, die oft durch die Gleichung
beschrieben wird, wobei der Drainstrom,
Die Resnet-Architektur (Residual Network) wurde entwickelt, um das Problem der vanishing gradients in tiefen neuronalen Netzwerken zu lösen. Sie führt das Konzept der Residualverbindungen ein, bei denen der Eingang einer Schicht direkt zur Ausgabe hinzugefügt wird, was als ausgedrückt wird, wobei die Funktion der Schicht ist. Diese Verbindung ermöglicht es dem Netzwerk, leichter tiefere Schichten zu trainieren, da es die Information der vorherigen Schichten direkt weiterleiten kann. Resnets bestehen aus mehreren solcher Residualblöcke, die es dem Modell ermöglichen, sehr tief zu sein (z. B. 50, 101 oder sogar 152 Schichten), ohne dass die Leistung leidet. Ein weiterer Vorteil der Resnet-Architektur ist die verbesserte Generalisation, die oft zu besseren Ergebnissen bei Bildklassifizierungsaufgaben führt.
Die Rankine-Effizienz ist ein Maß für die Leistung eines Rankine-Zyklus, der häufig in Dampfkraftwerken zur Energieerzeugung verwendet wird. Sie definiert das Verhältnis der tatsächlich erzeugten Arbeit zur maximal möglichen Arbeit, die aus dem thermodynamischen Prozess gewonnen werden kann. Mathematisch wird die Rankine-Effizienz () durch die Formel
bestimmt, wobei die netto erzeugte Arbeit und die zugeführte Wärme ist. Ein höherer Wert der Rankine-Effizienz bedeutet, dass der Zyklus effektiver arbeitet, was zu einer besseren Umwandlung von Wärme in mechanische Energie führt. Faktoren wie die Temperaturdifferenz zwischen dem heißen und dem kalten Reservoir sowie die Qualität des verwendeten Arbeitsmediums können die Effizienz erheblich beeinflussen.
Ein digitales Signal ist eine Art von Signal, das Informationen in diskreten Werten darstellt, im Gegensatz zu einem analogen Signal, das kontinuierliche Werte verwendet. Digitale Signale bestehen aus einer Folge von Zahlen oder Symbolen, die typischerweise binär codiert sind, also aus den Werten 0 und 1 bestehen. Diese Signale sind besonders wichtig in der modernen Kommunikationstechnik, da sie eine effiziente Übertragung, Speicherung und Verarbeitung von Informationen ermöglichen.
Ein digitales Signal kann mathematisch als eine Funktion beschrieben werden, die nur zu bestimmten Zeitpunkten definiert ist, was zu einer diskreten Sequenz führt. Beispielsweise kann ein digitales Signal in Form einer Folge dargestellt werden, wo ein ganzzahliger Index ist, der die Zeitpunkte angibt. Die Vorteile digitaler Signale umfassen eine höhere Robustheit gegenüber Rauschen, die Möglichkeit zur einfachen Bearbeitung und die Fähigkeit, Kompressionstechniken anzuwenden, um den Speicherbedarf zu reduzieren.
Der Lamb Shift ist ein physikalisches Phänomen, das in der Quantenmechanik auftritt und eine kleine Energieverschiebung in den Energieniveaus von Wasserstoffatomen beschreibt. Diese Verschiebung tritt aufgrund von Wechselwirkungen zwischen den Elektronen und dem Vakuumquantum hervor. Genauer gesagt, beeinflusst das Vorhandensein virtueller Teilchen im Vakuum die Energielevels des Elektrons, was zu einer Abweichung von den vorhergesagten Werten der klassischen Quantenmechanik führt.
Die Messung des Lamb Shift wurde erstmals von Willis E. Lamb und Robert C. Retherford im Jahr 1947 durchgeführt und zeigte, dass die Energieniveaus nicht nur durch die Coulomb-Kraft zwischen Elektron und Proton bestimmt werden, sondern auch durch die Quanteneffekte des elektromagnetischen Feldes. Diese Entdeckung war bedeutend, da sie die Notwendigkeit einer quantisierten Beschreibung des elektromagnetischen Feldes unterstrich und somit zur Entwicklung der Quantenfeldtheorie beitrug.
Cost-Push Inflation tritt auf, wenn die Produktionskosten für Unternehmen steigen, was dazu führt, dass sie die höheren Kosten an die Verbraucher weitergeben. Diese Art der Inflation kann durch verschiedene Faktoren ausgelöst werden, wie z.B. steigende Rohstoffpreise, Löhne oder Steuern. Wenn Unternehmen gezwungen sind, mehr für Inputs zu bezahlen, erhöhen sie in der Regel die Preise für ihre Produkte, um ihre Gewinnmargen zu schützen. Dies führt zu einer allgemeinen Preissteigerung, auch wenn die Nachfrage nach Gütern und Dienstleistungen nicht steigt. Ein bekanntes Beispiel sind plötzliche Anstiege der Ölpreise, die die Transport- und Produktionskosten in vielen Branchen erhöhen können. Infolgedessen können Konsumenten weniger für die gleichen Waren und Dienstleistungen kaufen, was die Kaufkraft verringert.
Karger’s Randomized Contraction ist ein probabilistischer Algorithmus zur Bestimmung des Minimum Cut in einem ungerichteten Graphen. Der Algorithmus funktioniert, indem er wiederholt zufällig Kanten auswählt und sie "kontrahiert", was bedeutet, dass die beiden Knoten, die durch die Kante verbunden sind, zu einem einzigen Knoten zusammengeführt werden. Dieser Prozess reduziert die Anzahl der Knoten im Graphen, während die Kanten zwischen den Knoten entsprechend angepasst werden.
Der Algorithmus wird solange fortgesetzt, bis nur noch zwei Knoten übrig sind, was den Minimum Cut repräsentiert. Die Wahrscheinlichkeit, dass der gefundene Schnitt tatsächlich der minimale Schnitt ist, steigt mit der Anzahl der durchgeführten Iterationen. Die Laufzeit des Algorithmus ist in der Regel , was ihn effizient für große Graphen macht, und er ist besonders nützlich, weil er einfach zu implementieren ist und gute durchschnittliche Ergebnisse liefert.