StudierendeLehrende

Plasmonic Waveguides

Plasmonische Wellenleiter sind spezielle optische Wellenleiter, die die Wechselwirkung zwischen Licht und Elektronen an der Oberfläche von Metallen nutzen. Sie ermöglichen die Übertragung von Lichtsignalen auf sehr kleinen Skalen, oft im Nanometerbereich, was sie besonders geeignet für Anwendungen in der Nanophotonik und der Plasmonik macht. Diese Wellenleiter basieren auf dem Phänomen der Plasmonen, die kollektive Schwingungen von Elektronen an der Metalloberfläche darstellen und die Fähigkeit haben, Licht in den subwellenlängen Bereich zu komprimieren. Ein wichtiger Vorteil von plasmonischen Wellenleitern ist ihre hohe räumliche und spektrale Empfindlichkeit, wodurch sie in Sensoren oder in der Informationsübertragung verwendet werden können. Mathematisch lassen sich die Eigenschaften von plasmonischen Wellenleitern durch die Maxwell-Gleichungen und die Dispersion von Plasmonen beschreiben, wobei die Beziehung zwischen Frequenz ω\omegaω und Wellenzahl kkk oft in Form von Dispersionrelationen formuliert wird.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Thermionische Emissionsgeräte

Thermionic Emission Devices sind elektronische Bauelemente, die auf dem Prinzip der thermionischen Emission basieren. Bei diesem Prozess werden Elektronen aus einem Material, typischerweise einem Metall oder Halbleiter, emittiert, wenn es auf eine ausreichend hohe Temperatur erhitzt wird. Die thermionische Emission tritt auf, wenn die thermische Energie der Elektronen die sogenannte Arbeitsfunktion des Materials übersteigt, was bedeutet, dass sie genügend Energie haben, um die Oberflächenbarriere zu überwinden. Diese Geräte finden Anwendung in verschiedenen Bereichen, wie zum Beispiel in Vakuumröhren, Elektronenstrahlkanonen und bestimmten Arten von Photovoltaikmodulen.

Die mathematische Beziehung, die die thermionische Emission beschreibt, kann durch die Richardson-Dushman-Gleichung dargestellt werden:

J=AT2e−ϕkTJ = A T^2 e^{-\frac{\phi}{k T}}J=AT2e−kTϕ​

Hierbei ist JJJ die Emissionsdichte, AAA eine Konstante, TTT die Temperatur in Kelvin, ϕ\phiϕ die Arbeitsfunktion des Materials und kkk die Boltzmann-Konstante. Diese Gleichung zeigt, dass die Emissionsrate mit der Temperatur exponentiell ansteigt, was die Effizienz thermionischer Geräte bei höheren Temperaturen erklärt.

Möbius-Transformation

Eine Möbius-Transformation, auch bekannt als lineare Bruchtransformation, ist eine spezielle Art von Funktion, die in der komplexen Analysis von Bedeutung ist. Sie hat die allgemeine Form

f(z)=az+bcz+df(z) = \frac{az + b}{cz + d}f(z)=cz+daz+b​

wobei a,b,c,da, b, c, da,b,c,d komplexe Zahlen sind und ad−bc≠0ad - bc \neq 0ad−bc=0. Diese Transformationen sind bijektiv und transformieren den komplexen Zahlenbereich auf sich selbst, was bedeutet, dass sie eine Eins-zu-Eins-Beziehung zwischen Punkten im komplexen Raum herstellen. Möbius-Transformationen erhalten die Eigenschaften des Kreises und der Geraden, was sie nützlich für Anwendungen in der Geometrie und der Funktionalanalysis macht. Wichtige Eigenschaften sind, dass sie die Form von Linien und Kreisen beibehalten und die sogenannten idealen Punkte (Punkte im Unendlichen) behandeln können. Sie finden auch Anwendung in verschiedenen Bereichen wie der Physik, der Ingenieurwissenschaft und der Computergrafik.

Cantors Diagonalargument

Das Cantor’sche Diagonalargument ist ein fundamentales Ergebnis in der Mengenlehre, das zeigt, dass die Menge der reellen Zahlen nicht abzählbar ist. Cantor begann mit der Annahme, dass alle reellen Zahlen im Intervall [0,1][0, 1][0,1] in einer Liste aufgeführt werden könnten. Um zu zeigen, dass dies nicht möglich ist, konstruierte er eine neue reelle Zahl, die von der ersten Zahl in der Liste an der ersten Stelle, von der zweiten Zahl an der zweiten Stelle und so weiter abweicht. Diese neu konstruierte Zahl unterscheidet sich also in jeder Dezimalstelle von jeder Zahl in der Liste, was bedeutet, dass sie nicht in der Liste enthalten sein kann. Damit wird bewiesen, dass es mehr reelle Zahlen als natürliche Zahlen gibt, was die Nicht-Abzählbarkeit der reellen Zahlen demonstriert. Dieses Argument hat tiefgreifende Konsequenzen für unser Verständnis von Unendlichkeit und die Struktur der Zahlen.

Borel-Cantelli-Lemma

Das Borel-Cantelli-Lemma ist ein zentrales Resultat in der Wahrscheinlichkeitstheorie, das sich mit der Konvergenz von Ereignissen in einer Folge von Zufallsvariablen beschäftigt. Es besagt, dass wenn A1,A2,A3,…A_1, A_2, A_3, \ldotsA1​,A2​,A3​,… eine Folge von Ereignissen ist und die Summe der Wahrscheinlichkeiten dieser Ereignisse endlich ist, d.h.

∑n=1∞P(An)<∞,\sum_{n=1}^{\infty} P(A_n) < \infty,n=1∑∞​P(An​)<∞,

dann tritt das Ereignis AnA_nAn​ nur endlich oft mit Wahrscheinlichkeit 1 auf. Umgekehrt, wenn die AnA_nAn​ unabhängig sind und

∑n=1∞P(An)=∞,\sum_{n=1}^{\infty} P(A_n) = \infty,n=1∑∞​P(An​)=∞,

dann tritt AnA_nAn​ mit Wahrscheinlichkeit 1 unendlich oft auf. Dieses Lemma verbindet somit die Konzepte der Wahrscheinlichkeit und der Konvergenz und ist grundlegend für die Analyse von Zufallsprozessen.

Schwinger-Effekt

Der Schwinger-Effekt ist ein Phänomen der Quantenfeldtheorie, das beschreibt, wie in einem starken elektrischen Feld virtuelle Teilchenpaare zu realen Teilchen werden können. Wenn ein elektrisches Feld stark genug ist, kann es die Energie, die zur Erzeugung von Teilchen benötigt wird, aus dem Vakuum "entziehen". Dies geschieht, weil das Vakuum nicht leer ist, sondern ein Meer von virtuellen Teilchen und Antiteilchen enthält, die ständig entstehen und wieder verschwinden.

Die Wahrscheinlichkeit, dass ein Teilchenpaar erzeugt wird, hängt von der Stärke des elektrischen Feldes EEE und der Masse mmm der erzeugten Teilchen ab und kann mathematisch durch die Formel:

Γ∝E2e−mE\Gamma \propto E^2 e^{-\frac{m}{E}}Γ∝E2e−Em​

beschrieben werden. Hierbei ist Γ\GammaΓ die Erzeugungsrate der Teilchenpaare. Der Schwinger-Effekt ist von großer Bedeutung für die theoretische Physik, da er die Verbindung zwischen Quantenmechanik und Elektrodynamik verdeutlicht und Einblicke in die Natur des Vakuums bietet.

Devisenreserven

Devisenreserven sind die Bestände an ausländischen Währungen, die von einer Zentralbank oder einer Regierung gehalten werden. Diese Reserven dienen als wichtiges Instrument zur Stabilisierung der nationalen Währung und zur Sicherstellung der Zahlungsfähigkeit im internationalen Handel. Die Reserven können in Form von Bargeld, Bankguthaben, Anleihen und Gold gehalten werden. Typischerweise werden sie verwendet, um Wechselkursbewegungen auszugleichen und um die Fähigkeit eines Landes zu unterstützen, internationale Schulden zu begleichen. Ein hoher Stand an Devisenreserven kann das Vertrauen in die Wirtschaft eines Landes stärken und dazu beitragen, finanzielle Krisen abzumildern.