StudierendeLehrende

High Entropy Alloys For Aerospace

High Entropy Alloys (HEAs) sind eine neuartige Klasse von Legierungen, die aus fünf oder mehr Hauptbestandteilen bestehen, wobei jeder Bestandteil in ähnlichen Konzentrationen vorliegt. Diese hochentropischen Legierungen bieten bemerkenswerte Eigenschaften wie hohe Festigkeit, Korrosionsbeständigkeit und hohe thermische Stabilität, was sie besonders für den Einsatz in der Luft- und Raumfahrtindustrie geeignet macht. Dank ihrer einzigartigen Mikrostruktur können HEAs extremen Bedingungen standhalten, die bei der Herstellung und dem Betrieb von Flugzeugen und Raumfahrzeugen auftreten. Ein weiterer Vorteil ist die Möglichkeit, durch gezielte Anpassungen der Zusammensetzung und der Verarbeitung die Eigenschaften der Legierungen zu optimieren. Somit ermöglichen HEAs nicht nur eine Gewichtsreduktion, sondern auch eine Verbesserung der Gesamtleistung von Luftfahrzeugen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Lieferkettenoptimierung

Die Supply Chain Optimization (Lieferkettenoptimierung) bezieht sich auf den Prozess der Verbesserung der Effizienz und Effektivität aller Aktivitäten, die in der Lieferkette eines Unternehmens stattfinden. Ziel ist es, die Gesamtkosten zu minimieren und gleichzeitig die Servicequalität zu maximieren. Dies umfasst verschiedene Aspekte wie die Planung, Beschaffung, Produktion, Lagerung und Distribution von Waren und Dienstleistungen.

Ein zentraler Bestandteil der Lieferkettenoptimierung ist die Analyse und Gestaltung von Flussdiagrammen, um Engpässe oder Überkapazitäten zu identifizieren. Hierbei kommen häufig mathematische Modelle und Algorithmen zum Einsatz, um Entscheidungsprozesse zu unterstützen. Beispielsweise kann die Optimierung des Bestandsniveaus mit der Formel:

EOQ=2DSH\text{EOQ} = \sqrt{\frac{2DS}{H}}EOQ=H2DS​​

beschrieben werden, wobei DDD die Nachfrage, SSS die Bestellkosten und HHH die Lagerhaltungskosten sind. Durch effektive Strategien zur Optimierung der Lieferkette können Unternehmen nicht nur Kosten sparen, sondern auch ihre Reaktionsfähigkeit auf Marktveränderungen erhöhen.

Domänenwandbewegung

Die Domain Wall Motion bezieht sich auf die Bewegung von Wandstrukturen, die zwischen verschiedenen magnetischen Domänen in ferromagnetischen Materialien existieren. Eine magnetische Domäne ist ein Bereich, in dem die magnetischen Spins der Atome in eine einheitliche Richtung ausgerichtet sind. Wenn eine äußere Kraft, wie ein elektrisches Feld oder ein Magnetfeld, auf das Material ausgeübt wird, können diese Wände verschoben werden, was als Domainwandbewegung bezeichnet wird. Diese Bewegung ist entscheidend für eine Vielzahl von Anwendungen, insbesondere in der Datenspeicherung und Magnetoelektronik, da sie die Informationsdichte und die Geschwindigkeit von Speichergeräten beeinflussen kann.

Die Dynamik der Domainwandbewegung lässt sich durch die Beziehung zwischen Energie und Spannung beschreiben, wobei die Wandbewegung energetisch begünstigt wird, wenn die äußeren Bedingungen optimal sind. Das Verständnis dieser Prozesse ist von zentraler Bedeutung für die Entwicklung neuer Technologien und Materialien in der Nanotechnologie und Spintronik.

Batch Normalisierung

Batch Normalization ist eine Technik, die in neuronalen Netzwerken verwendet wird, um die Trainingsgeschwindigkeit zu verbessern und die Stabilität des Modells zu erhöhen. Sie wird zwischen den Schichten des Netzwerks angewendet und normalisiert die Eingaben jeder Schicht, indem sie die Mittelwerte und Varianzen der Mini-Batches verwendet. Dies geschieht durch die Formel:

x^=x−μσ2+ϵ\hat{x} = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}}x^=σ2+ϵ​x−μ​

Hierbei ist μ\muμ der Mittelwert und σ2\sigma^2σ2 die Varianz des aktuellen Mini-Batches, während ϵ\epsilonϵ eine kleine Konstante ist, die zur Vermeidung von Division durch Null dient. Nach der Normalisierung wird eine Affine Transformation angewendet, die es dem Modell ermöglicht, die Normalisierung an die spezifischen Anforderungen des Lernprozesses anzupassen:

y=γx^+βy = \gamma \hat{x} + \betay=γx^+β

Dabei sind γ\gammaγ und β\betaβ lernbare Parameter. Die Hauptvorteile von Batch Normalization sind die Beschleunigung des Trainings, die Reduzierung der Anfälligkeit für Überanpassung und die Möglichkeit, mit höheren Lernraten zu arbeiten.

Versunkene Kosten

Der Begriff Sunk Cost bezieht sich auf Kosten, die bereits angefallen sind und nicht rückgängig gemacht werden können. Diese Kosten sollten bei zukünftigen Entscheidungen ignoriert werden, da sie unabhängig von den gegenwärtigen und zukünftigen Handlungen sind. Oft neigen Menschen dazu, an Entscheidungen festzuhalten, nur weil sie bereits Zeit, Geld oder Ressourcen investiert haben, was zu irrationalem Verhalten führen kann. Ein typisches Beispiel ist der Fall, in dem jemand ein Ticket für ein Konzert gekauft hat, aber am Tag des Konzerts krank ist; anstatt die Zeit und das Geld, die bereits investiert wurden, zu berücksichtigen, sollte die Person entscheiden, ob sie sich tatsächlich gut genug fühlt, um hinzugehen.

In der Wirtschaft kann dies zu suboptimalen Entscheidungen führen, wenn Unternehmen an Projekten festhalten, die nicht mehr rentabel sind, nur weil bereits hohe Investitionen getätigt wurden. Es ist wichtig, sich bewusst zu machen, dass die zukunftsorientierte Analyse der Kosten und Nutzen für die Entscheidungsfindung entscheidend ist, anstatt sich von vergangenen Ausgaben leiten zu lassen.

Liquiditätsfalle

Eine Liquiditätsfalle ist eine wirtschaftliche Situation, in der die Geldpolitik der Zentralbank ineffektiv wird, weil die Zinssätze bereits sehr niedrig sind und die Menschen dennoch nicht bereit sind, zusätzliches Geld auszugeben oder zu investieren. In einer solchen Situation neigen die Haushalte und Unternehmen dazu, ihr Geld zu horten, anstatt es auszugeben, selbst wenn die Zentralbank die Zinsen weiter senkt. Dies kann dazu führen, dass die Geldmenge im Wirtschaftssystem nicht die gewünschte Wirkung entfaltet und die Wirtschaft stagnieren oder sogar in eine Deflation abrutschen kann.

Die Liquiditätsfalle wird häufig durch folgende Faktoren begünstigt:

  • Erwartungen über zukünftige Entwicklungen: Wenn Konsumenten und Investoren pessimistisch sind, halten sie ihr Geld lieber zurück.
  • Niedrige Inflationsraten: In einem Umfeld mit sehr niedriger Inflation oder Deflation ist die Anreizstruktur für Konsum und Investition geschwächt.

In einer Liquiditätsfalle ist es für die Zentralbank schwierig, die Wirtschaft durch traditionelle geldpolitische Maßnahmen zu stimulieren, was oft zu einem Bedarf an alternativen politischen Maßnahmen führt.

Dirichlet-Randbedingungen

Das Dirichlet-Problem bezieht sich auf eine spezielle Art von Randwertproblemen in der Mathematik, insbesondere in der Theorie der partiellen Differentialgleichungen. Bei diesen Problemen werden die Werte einer Funktion an den Rändern eines bestimmten Gebiets vorgegeben. Mathematisch formuliert bedeutet dies, dass für ein Gebiet Ω\OmegaΩ und den Rand ∂Ω\partial \Omega∂Ω die Funktion uuu an den Randpunkten festgelegt ist, also u(x)=g(x)u(x) = g(x)u(x)=g(x) für x∈∂Ωx \in \partial \Omegax∈∂Ω, wobei ggg eine gegebene Funktion ist.

Diese Randbedingungen sind besonders wichtig, um Lösungen für physikalische Probleme zu finden, die oft in Form von Temperaturverteilungen, elektrischen Feldern oder anderen physikalischen Größen auftreten. Die Dirichlet-Bedingungen garantieren, dass die Lösung an den Randpunkten konstant bleibt, was in vielen Anwendungen, wie z.B. bei der Wärmeleitung oder der Elastizitätstheorie, von entscheidender Bedeutung ist. Um eine eindeutige Lösung zu gewährleisten, müssen die Randbedingungen konsistent und gut definiert sein.