StudierendeLehrende

High Entropy Alloys For Aerospace

High Entropy Alloys (HEAs) sind eine neuartige Klasse von Legierungen, die aus fünf oder mehr Hauptbestandteilen bestehen, wobei jeder Bestandteil in ähnlichen Konzentrationen vorliegt. Diese hochentropischen Legierungen bieten bemerkenswerte Eigenschaften wie hohe Festigkeit, Korrosionsbeständigkeit und hohe thermische Stabilität, was sie besonders für den Einsatz in der Luft- und Raumfahrtindustrie geeignet macht. Dank ihrer einzigartigen Mikrostruktur können HEAs extremen Bedingungen standhalten, die bei der Herstellung und dem Betrieb von Flugzeugen und Raumfahrzeugen auftreten. Ein weiterer Vorteil ist die Möglichkeit, durch gezielte Anpassungen der Zusammensetzung und der Verarbeitung die Eigenschaften der Legierungen zu optimieren. Somit ermöglichen HEAs nicht nur eine Gewichtsreduktion, sondern auch eine Verbesserung der Gesamtleistung von Luftfahrzeugen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Plasmon-verstärkte Solarzellen

Plasmon-enhanced Solarzellen nutzen die einzigartigen Eigenschaften von Plasmonen, die kollektiven Schwingungen von Elektronen an der Oberfläche von Metallen, um die Effizienz der Lichtabsorption zu erhöhen. Durch die Integration von nanostrukturierten Metall-Elementen, wie Silber oder Gold, in die Solarzelle wird das einfallende Licht in Form von Plasmonen angeregt, wodurch die lokale elektromagnetische Felder verstärkt werden. Diese Verstärkung führt dazu, dass mehr Photonen in die aktive Schicht der Solarzelle eindringen und somit die Erzeugung von Elektronen erhöht wird. Die Schlüsselvorteile dieser Technologie sind:

  • Erhöhte Effizienz: Durch die Verbesserung der Lichtabsorption kann die Energieausbeute der Solarzelle gesteigert werden.
  • Breiteres Spektrum: Plasmonen können auch bei verschiedenen Wellenlängen des Lichts aktiv sein, was die Solarzellen vielseitiger macht.
  • Miniaturisierung: Die Verwendung von Nanostrukturen ermöglicht kompaktere Designs und könnte die Herstellungskosten senken.

Insgesamt stellen plasmon-enhanced Solarzellen eine vielversprechende Innovation in der Photovoltaik dar, die das Potenzial hat, die Energieerzeugung aus Sonnenlicht signifikant zu verbessern.

Edge-Computing-Architektur

Edge Computing Architecture bezieht sich auf ein dezentrales Rechenmodell, bei dem Datenverarbeitung und Analyse näher an der Quelle der Datenerzeugung stattfinden, anstatt in zentralisierten Cloud-Rechenzentren. Dies geschieht häufig durch die Nutzung von Edge-Geräten, die an verschiedenen Standorten, wie zum Beispiel IoT-Geräten, Sensoren oder lokalen Servern, platziert sind. Die Hauptvorteile dieser Architektur sind reduzierte Latenzzeiten, da Daten nicht über große Entfernungen gesendet werden müssen, sowie eine erhöhte Bandbreitenoptimierung, da nur relevante Daten an die Cloud gesendet werden.

Die Edge Computing Architecture kann in folgende Schichten unterteilt werden:

  1. Edge Layer: Umfasst die physischen Geräte und Sensoren, die Daten erzeugen.
  2. Edge Processing Layer: Hier findet die erste Datenverarbeitung statt, oft direkt auf den Geräten oder in der Nähe.
  3. Data Aggregation Layer: Diese Schicht aggregiert und filtert die Daten, bevor sie an die Cloud gesendet werden.
  4. Cloud Layer: Bietet eine zentrale Plattform für tiefere Analysen und langfristige Datenspeicherung.

Durch diese Struktur wird nicht nur die Effizienz erhöht, sondern auch die Sicherheit verbessert, da sensible Daten lokal verarbeitet werden können.

Mikrobiom-Sequenzierung

Microbiome Sequencing ist eine Methode zur Analyse der genetischen Vielfalt und Struktur der Mikrobiota, die in einem bestimmten Lebensraum, wie dem menschlichen Darm, vorkommt. Diese Technik ermöglicht es Wissenschaftlern, die DNA von Mikroben zu sequenzieren und zu identifizieren, um ein umfassendes Bild der mikrobiellen Gemeinschaften zu erhalten. Durch den Einsatz von Hochdurchsatz-Sequenzierungstechnologien können Tausende von mikrobiellen Arten gleichzeitig analysiert werden, was die Erstellung von metagenomischen Profilen ermöglicht. Die gewonnenen Daten können zur Untersuchung von Zusammenhängen zwischen der Mikrobiota und verschiedenen Gesundheitszuständen, wie z.B. Fettleibigkeit oder Entzündungskrankheiten, genutzt werden. Die Analyse des Mikrobioms hat das Potenzial, neue therapeutische Ansätze in der Medizin zu entwickeln und unser Verständnis von ökologischen Systemen zu erweitern.

Perfekte Hashfunktion

Perfect Hashing ist eine Technik zur Erstellung von Hash-Tabellen, die garantiert, dass es keine Kollisionen gibt, wenn man eine endliche Menge von Schlüsseln in die Tabelle einfügt. Im Gegensatz zu normalen Hashing-Methoden, bei denen Kollisionen durch verschiedene Strategien wie Verkettung oder offene Adressierung behandelt werden, erzeugt Perfect Hashing eine Funktion, die jeden Schlüssel eindeutig auf einen Index in der Tabelle abbildet. Diese Methode besteht in der Regel aus zwei Phasen: Zunächst wird eine primäre Hash-Funktion entwickelt, um die Schlüssel in Buckets zu gruppieren, und dann wird für jeden Bucket eine sekundäre Hash-Funktion erstellt, die die Schlüssel innerhalb des Buckets perfekt abbildet.

Die Herausforderung bei Perfect Hashing liegt in der Notwendigkeit, eine geeignete Hash-Funktion zu finden, die die Kollisionen vermeidet und gleichzeitig die Effizienz des Zugriffs auf die Daten gewährleistet. Mathematisch kann man Perfect Hashing als eine Abbildung h:S→[0,m−1]h: S \to [0, m-1]h:S→[0,m−1] betrachten, wobei SSS die Menge der Schlüssel und mmm die Größe der Hash-Tabelle ist. Perfect Hashing ist besonders nützlich in Anwendungen, wo die Menge der Schlüssel fest und bekannt ist, wie in kompakten Datenstrukturen oder bei der Implementierung von Symboltabellen.

Ramsey-Modell

Das Ramsey Model ist ein wirtschaftswissenschaftliches Modell, das die optimale Konsum- und Investitionspolitik über die Zeit beschreibt. Es wurde von Frank P. Ramsey in den 1920er Jahren entwickelt und zielt darauf ab, den intertemporalen Konsum zu maximieren, indem es die Frage beantwortet, wie eine Gesellschaft ihre Ressourcen am effizientesten über verschiedene Zeitperioden verteilt. Das Modell basiert auf der Annahme, dass Haushalte ihren Konsum so wählen, dass sie den Nutzen über die Zeit maximieren, was zu einer bestimmten Sparrate führt.

Die Grundgleichung des Modells berücksichtigt das Wachstum der Bevölkerung, die Produktivität und die Rendite von Kapital. Mathematisch kann das Problem der optimalen Konsum- und Investitionsentscheidung als Optimierungsproblem formuliert werden, in dem der Nutzen U(ct)U(c_t)U(ct​) über die Zeit maximiert wird, wobei ctc_tct​ der Konsum zu Zeitpunkt ttt ist. In diesem Zusammenhang spielt der Zeitpräferenzsatz eine entscheidende Rolle, da er beschreibt, wie Konsum in der Gegenwart im Vergleich zur Zukunft gewichtet wird.

Legendre-Polynom

Die Legendre-Polynome sind eine Familie von orthogonalen Polynomen, die in der Mathematik eine wichtige Rolle spielen, insbesondere in der Numerischen Integration und der Lösung von Differentialgleichungen. Sie sind definiert auf dem Intervall [−1,1][-1, 1][−1,1] und werden häufig mit Pn(x)P_n(x)Pn​(x) bezeichnet, wobei nnn den Grad des Polynoms angibt. Die Polynome können rekursiv durch die Beziehung

P0(x)=1,P1(x)=x,Pn(x)=(2n−1)xPn−1(x)−(n−1)Pn−2(x)nP_0(x) = 1, \quad P_1(x) = x, \quad P_n(x) = \frac{(2n - 1)xP_{n-1}(x) - (n-1)P_{n-2}(x)}{n}P0​(x)=1,P1​(x)=x,Pn​(x)=n(2n−1)xPn−1​(x)−(n−1)Pn−2​(x)​

für n≥2n \geq 2n≥2 erzeugt werden.

Ein bemerkenswertes Merkmal der Legendre-Polynome ist ihre Orthogonalität: Sie erfüllen die Bedingung

∫−11Pm(x)Pn(x) dx=0fu¨r m≠n.\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{für } m \neq n.∫−11​Pm​(x)Pn​(x)dx=0fu¨r m=n.

Diese Eigenschaft macht sie besonders nützlich in der Approximationstheorie und in der Physik, insbesondere bei der Lösung von Problemen, die mit sphärischer Symmetrie verbunden sind.