Die Entropie eines Pseudorandom Number Generators (PRNG) beschreibt die Unvorhersehbarkeit und den Grad der Zufälligkeit der von ihm erzeugten Zahlen. Entropie ist ein Maß für die Unsicherheit in einem System, und je höher die Entropie eines PRNG ist, desto schwieriger ist es, die nächsten Ausgaben vorherzusagen. Ein PRNG, der aus einer deterministischen Quelle wie einem Algorithmus speist, benötigt jedoch eine initiale Zufallsquelle, um eine ausreichende Entropie zu gewährleisten. Diese Quelle kann beispielsweise durch physikalische Prozesse (z.B. thermisches Rauschen) oder durch Benutzerinteraktionen (wie Mausbewegungen) gewonnen werden.
Die mathematische Formalisierung der Entropie kann durch die Shannon-Entropie gegeben werden, die wie folgt definiert ist:
wobei die Entropie des Zufallsprozesses darstellt und die Wahrscheinlichkeit des Auftretens des Ereignisses ist. Eine hohe Entropie ist entscheidend für sicherheitskritische Anwendungen wie Kryptografie, wo die Vorhersagbarkeit von Zufallszahlen zu erheblichen Sicherheitsrisiken führen
Layered Transition Metal Dichalcogenides (TMDs) sind eine Klasse von Materialien, die aus Schichten von Übergangsmetallen und Chalkogeniden (wie Schwefel, Selen oder Tellur) bestehen. Diese Materialien zeichnen sich durch ihre schichtartige Struktur aus, wobei jede Schicht durch schwache van-der-Waals-Kräfte zusammengehalten wird. TMDs besitzen außergewöhnliche elektronische und optische Eigenschaften, die sie für Anwendungen in der Nanoelektronik und Photonik interessant machen. Zum Beispiel können sie als halbleitende Materialien fungieren, die sich durch das Entfernen oder Hinzufügen von Schichten in ihren Eigenschaften verändern lassen. Ein bekanntes Beispiel ist Molybdändisulfid (MoS), das aufgrund seiner hervorragenden Eigenschaften in der Forschung und Technologie viel Aufmerksamkeit erhält. Die vielfältigen Möglichkeiten zur Modifikation und Kombination dieser Materialien eröffnen neue Perspektiven für die Entwicklung innovativer Technologien in der Materialwissenschaft.
Die hyperbolische Geometrie ist ein nicht-euklidisches geometrisches System, das sich durch die Annahme auszeichnet, dass es durch einen Punkt außerhalb einer gegebenen Linie unendlich viele Linien gibt, die parallel zu dieser Linie verlaufen. Im Gegensatz zur euklidischen Geometrie, wo die Winkelsumme eines Dreiecks beträgt, beträgt die Winkelsumme in der hyperbolischen Geometrie stets weniger als . Diese Geometrie wird oft mit dem Modell des hyperbolischen Raums visualisiert, das beispielsweise durch das Poincaré-Modell oder das Klein-Modell dargestellt werden kann.
Ein zentrales Konzept in der hyperbolischen Geometrie ist die Kurvenlänge und die Flächenberechnung, die sich grundlegend von den euklidischen Konzepten unterscheiden. Die hyperbolische Geometrie findet Anwendungen in verschiedenen Bereichen, einschließlich der Topologie, der Kunst und sogar der Relativitätstheorie, da sie hilft, komplexe Strukturen und Räume zu verstehen.
Polymer Electrolyte Membranes (PEMs) sind spezielle Materialien, die als Elektrolyt in Brennstoffzellen und anderen elektrochemischen Systemen eingesetzt werden. Sie bestehen aus polymeren Materialien, die ionenleitend sind und gleichzeitig eine hohe chemische Stabilität aufweisen. PEMs ermöglichen den Transport von Protonen (H) von der Anode zur Kathode, während sie Elektronen im äußeren Stromkreis leiten. Diese Eigenschaften sind entscheidend für die Effizienz von Brennstoffzellen, da sie die Umwandlung von chemischer Energie in elektrische Energie ermöglichen. Zu den häufig verwendeten Materialien für PEMs gehören Nafion und andere sulfonierte Polymere, die eine hohe Protonenleitfähigkeit aufweisen. Die Entwicklung und Optimierung dieser Membranen ist ein aktives Forschungsfeld, um die Leistung und Lebensdauer von Brennstoffzellen zu verbessern.
Das Pauli-Prinzip besagt, dass zwei identische Fermionen, wie Elektronen, nicht denselben Quantenzustand einnehmen können. Dies bedeutet, dass in einem System von Elektronen in einem Atom kein Paar von Elektronen die gleichen vier Quantenzahlen haben kann. Die vier Quantenzahlen sind:
Das Pauli-Prinzip ist entscheidend für das Verständnis der Elektronenkonfiguration in Atomen und erklärt die Struktur des Periodensystems. Durch dieses Prinzip können Elektronen in einem Atom verschiedene Energieniveaus und Orbitale einnehmen, was zu den charakteristischen chemischen Eigenschaften der Elemente führt. In der Praxis führt das Pauli-Prinzip zu einer Stabilität der Materie, da es die maximal mögliche Anzahl von Elektronen in einem bestimmten Energieniveau und Orbital definiert.
Stochastic Gradient Descent (SGD) ist ein weit verbreiteter Optimierungsalgorithmus, der häufig in maschinellem Lernen und statistischer Modellierung verwendet wird. Der zentrale Mechanismus von SGD besteht darin, dass er die Gradienten der Kostenfunktion nicht über das gesamte Datenset, sondern über zufällig ausgewählte Teilmengen (Minibatches) berechnet. Diese Vorgehensweise führt zu einer schnelleren Konvergenz und ermöglicht es, große Datensätze effizient zu verarbeiten.
Die mathematische Grundlage für SGD beruht auf der Annahme, dass die Kostenfunktion bezüglich der Modellparameter minimiert werden soll. Der SGD-Update-Schritt wird durch die Formel
definiert, wobei die Lernrate ist und ein zufälliges Datenpaar aus dem Datensatz darstellt. Die Beweise für die Konvergenz von SGD zeigen, dass unter bestimmten Bedingungen (wie einer geeigneten Wahl der Lernrate und einer hinreichend glatten Kostenfunktion) der Algorithmus tatsächlich in der Lage ist, das Minimum der Kostenfunktion zu erreichen, auch wenn dies in einem stochastischen Umfeld
Das Nash Equilibrium ist ein zentrales Konzept in der Spieltheorie, das beschreibt, in welchem Zustand Spieler in einem Spiel strategische Entscheidungen treffen, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. In einem Nash-Gleichgewicht wählt jeder Spieler die beste Strategie, gegeben die Strategien der anderen Spieler. Dies bedeutet, dass alle Spieler gleichzeitig optimal handeln, und zwar in dem Sinne, dass ihr Nutzen maximiert wird, solange die anderen Spieler ihre Entscheidungen beibehalten.
Mathematisch lässt sich das Nash-Gleichgewicht wie folgt formulieren: Sei die Strategie des Spielers und die Nutzenfunktion. Ein Nash-Gleichgewicht liegt vor, wenn für jeden Spieler gilt:
für alle möglichen Strategien von Spieler . Ein bekanntes Beispiel für ein Nash-Gleichgewicht ist das Gefangenendilemma, wo zwei Gefangene, die unabhängig entscheiden, ob sie gestehen oder schweigen, im Gleich