StudierendeLehrende

Power Spectral Density

Die Power Spectral Density (PSD) ist ein Maß für die Verteilung der Leistung eines Signals über verschiedene Frequenzen. Sie beschreibt, wie die Energie eines Signals im Frequenzbereich konzentriert ist und wird häufig in der Signalverarbeitung und Kommunikationstechnik verwendet. Die PSD wird typischerweise in Einheiten von Leistung pro Frequenzeinheit, z. B. Watt pro Hertz (W/Hz), angegeben. Mathematisch wird die PSD oft als die Fourier-Transformierte der Autokorrelationsfunktion eines Signals definiert:

S(f)=∫−∞∞R(τ)e−j2πfτdτS(f) = \int_{-\infty}^{\infty} R(\tau) e^{-j 2 \pi f \tau} d\tauS(f)=∫−∞∞​R(τ)e−j2πfτdτ

wobei R(τ)R(\tau)R(τ) die Autokorrelationsfunktion ist. Die Analyse der PSD ermöglicht es, Frequenzkomponenten eines Signals zu identifizieren und deren relative Stärke zu bewerten, was in Anwendungen wie Rauschmessungen, Systemanalysen und der Überwachung von Signalqualität von großer Bedeutung ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Endogene Wachstum

Endogene Wachstumstheorien sind Modelle, die erklären, wie wirtschaftliches Wachstum durch interne Faktoren innerhalb der Wirtschaft selbst generiert wird, im Gegensatz zu externen Faktoren wie Ressourcen oder Technologie. Diese Theorien betonen die Rolle von Innovation, Bildung und Kapitalakkumulation als treibende Kräfte des Wachstums. Im Gegensatz zu neoklassischen Modellen, die annehmen, dass technologische Fortschritte exogen sind, argumentieren endogene Wachstumstheorien, dass Unternehmen und Individuen aktiv in Forschung und Entwicklung investieren, was zu kontinuierlichem Fortschritt und langfristigem Wachstum führt.

Ein zentrales Konzept ist das Human Capital, das besagt, dass Investitionen in Bildung und Ausbildung die Produktivität erhöhen können. Mathematisch lässt sich das endogene Wachstum oft durch die Gleichung darstellen:

Y=A⋅Kα⋅(H⋅L)1−αY = A \cdot K^\alpha \cdot (H \cdot L)^{1-\alpha}Y=A⋅Kα⋅(H⋅L)1−α

Hierbei steht YYY für das Output, AAA für den technologischen Fortschritt, KKK für das Kapital, HHH für das Humankapital und LLL für die Arbeit. Endogene Wachstumstheorien haben bedeutende Implikationen für die Wirtschaftspolitik, da sie darauf hinweisen, dass staatliche Investitionen in Bildung und Infrastruktur entscheidend für das langfristige Wachstum sind.

H-Brücken-Wechselrichtertopologie

Die H-Bridge Inverter Topology ist eine grundlegende Schaltung, die häufig in der Leistungselektronik verwendet wird, um Gleichstrom (DC) in Wechselstrom (AC) umzuwandeln. Sie besteht aus vier Schaltern, die in einer H-Form angeordnet sind, wobei jeder Schalter typischerweise ein Transistor ist. Durch das gezielte Ein- und Ausschalten dieser Schalter kann die Polung der Ausgangsspannung verändert werden, was zur Erzeugung eines sinusförmigen oder pulsierenden Wechselstroms führt.

Die Schaltung ermöglicht es, die Ausgangsspannung VoutV_{out}Vout​ zu steuern, indem die Schalter in einer bestimmten Reihenfolge aktiviert werden. Dies führt zu einem effektiven Wechsel von positiver und negativer Spannung, was die Erzeugung von AC-Strom mit variabler Frequenz und Amplitude ermöglicht. Eine wichtige Anwendung dieser Topologie findet sich in Motorantrieben, wo sie zur Steuerung der Drehzahl und des Drehmoments von Elektromotoren eingesetzt wird.

Zusammengefasst ist die H-Bridge eine vielseitige und effiziente Lösung zur Umwandlung von DC in AC, die in vielen technischen Anwendungen von entscheidender Bedeutung ist.

Samuelson-Modell der öffentlichen Güter

Das Samuelson Public Goods Model, benannt nach dem Ökonom Paul Samuelson, beschreibt die Bereitstellung öffentlicher Güter und deren Finanzierung. Öffentliche Güter sind durch zwei Hauptmerkmale gekennzeichnet: Nicht-Ausschließbarkeit und Nicht-Rivalität. Das bedeutet, dass niemand von der Nutzung ausgeschlossen werden kann und die Nutzung durch eine Person die Nutzung durch eine andere Person nicht verringert.

Im Modell wird die effiziente Bereitstellung öffentlicher Güter durch die Gleichheit der Grenzkosten und dem Grenznutzen aller Konsumenten erreicht. Dies kann mathematisch als folgt dargestellt werden:

∑i=1nMUi=MC\sum_{i=1}^{n} MU_i = MCi=1∑n​MUi​=MC

Hierbei steht MUiMU_iMUi​ für den Grenznutzen des i-ten Konsumenten, MCMCMC für die Grenzkosten der Bereitstellung des öffentlichen Gutes und nnn für die Anzahl der Konsumenten. Das Modell zeigt, dass die kollektive Entscheidung über die Bereitstellung öffentlicher Güter oft zu einer Unterproduktion führen kann, da individuelle Nutzen nicht immer die Kosten decken, was zu einem Marktversagen führt.

Fourier Neural Operator

Der Fourier Neural Operator (FNO) ist ein neuartiger Ansatz zur Lösung von partiellen Differentialgleichungen (PDEs) und zur Approximation von Funktionen in hohen Dimensionen. Er nutzt die Fourier-Transformation, um die Eingabedaten in den Frequenzraum zu transformieren, wo die mathematischen Operationen effizienter durchgeführt werden können. Durch die Verwendung von Faltungsoperationen im Frequenzraum kann der FNO komplexe Zusammenhänge zwischen den Eingaben und Ausgaben lernen, was zu einer schnelleren und genaueren Lösung führt.

Die Hauptidee hinter dem FNO ist die Erfassung der globalen Informationen in den Daten durch die Analyse der Frequenzkomponenten, was insbesondere bei Aufgaben wie der Strömungsdynamik oder der Materialwissenschaft von Vorteil ist. Ein zentraler Vorteil dieses Ansatzes ist die Fähigkeit, die Lösung von PDEs schnell zu approximieren, ohne dass eine umfassende Netzwerkausbildung für jede spezifische Aufgabe erforderlich ist. Dies ermöglicht eine skalierbare und effiziente Modellierung komplexer physikalischer Systeme.

Dirac-Delta

Die Dirac-Delta-Funktion, oft einfach als Delta-Funktion bezeichnet, ist ein mathematisches Konzept, das in der Physik und Ingenieurwissenschaft häufig verwendet wird. Sie wird definiert als eine Funktion δ(x)\delta(x)δ(x), die an einem Punkt x=0x = 0x=0 unendlich hoch ist und außerhalb dieses Punktes den Wert 0 annimmt. Formal wird sie so beschrieben:

δ(x)={∞fu¨r x=00fu¨r x≠0\delta(x) = \begin{cases} \infty & \text{für } x = 0 \\ 0 & \text{für } x \neq 0 \end{cases}δ(x)={∞0​fu¨r x=0fu¨r x=0​

Ein zentrales Merkmal der Dirac-Delta-Funktion ist, dass das Integral über die gesamte Funktion gleich 1 ist:

∫−∞∞δ(x) dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1∫−∞∞​δ(x)dx=1

Die Delta-Funktion wird häufig verwendet, um ideale Punktquellen oder -impulse zu modellieren, da sie es ermöglicht, physikalische Phänomene wie elektrische Ladungen oder mechanische Kräfte, die an einem bestimmten Punkt wirken, präzise zu beschreiben. In der Theorie der Fourier-Transformation spielt die Dirac-Delta-Funktion eine entscheidende Rolle, da sie als "Sonde" für die Frequenzanalyse fungiert.

Planck-Konstante

Die Planck-Konstante ist eine fundamentale physikalische Konstante, die die quantenmechanischen Eigenschaften von Materie und Licht beschreibt. Sie wird normalerweise mit dem Symbol hhh dargestellt und hat den Wert h≈6,626×10−34 Jsh \approx 6,626 \times 10^{-34} \, \text{Js}h≈6,626×10−34Js. Diese Konstante spielt eine zentrale Rolle in der Quantenmechanik, insbesondere in der Beziehung zwischen Energie EEE und Frequenz ν\nuν eines Photons, die durch die Gleichung E=h⋅νE = h \cdot \nuE=h⋅ν gegeben ist. Die Planck-Konstante ist auch entscheidend für das Verständnis von Phänomenen wie dem photoelektrischen Effekt und der quantisierten Natur des Lichts. In der modernen Physik wird sie häufig in Form der reduzierten Planck-Konstante ℏ\hbarℏ verwendet, die definiert ist als ℏ=h2π\hbar = \frac{h}{2\pi}ℏ=2πh​.