StudierendeLehrende

Pell’S Equation Solutions

Die Pell-Gleichung hat die Form x2−Dy2=1x^2 - Dy^2 = 1x2−Dy2=1, wobei DDD eine positive ganze Zahl ist, die kein Quadrat ist. Die Lösungen dieser Gleichung sind Paare von ganzen Zahlen (x,y)(x, y)(x,y), die die Gleichung erfüllen. Die Theorie der Pell-Gleichung zeigt, dass es unendlich viele Lösungen gibt, die aus einer grundlegenden Lösung abgeleitet werden können. Eine grundlegende Lösung ist das kleinste Paar (x1,y1)(x_1, y_1)(x1​,y1​), das die Gleichung erfüllt. Alle weiteren Lösungen können durch wiederholte Anwendung des Verfahrens zur Erzeugung neuer Lösungen, oft unter Verwendung der Eigenschaften von quadratischen Formen, gewonnen werden. Diese Lösungen haben zahlreiche Anwendungen in der Zahlentheorie und der algebraischen Geometrie.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Kolmogorov-Smirnov-Test

Der Kolmogorov-Smirnov Test ist ein statistisches Verfahren, das verwendet wird, um die Übereinstimmung zwischen einer empirischen Verteilung und einer theoretischen Verteilung zu überprüfen oder um zwei empirische Verteilungen miteinander zu vergleichen. Der Test basiert auf der maximalen Differenz zwischen den kumulativen Verteilungsfunktionen (CDF) der beiden Verteilungen. Die Teststatistik wird definiert als:

D=max⁡∣Fn(x)−F(x)∣D = \max |F_n(x) - F(x)|D=max∣Fn​(x)−F(x)∣

wobei Fn(x)F_n(x)Fn​(x) die empirische Verteilungsfunktion und F(x)F(x)F(x) die theoretische Verteilungsfunktion ist. Ein hoher Wert von DDD deutet darauf hin, dass die Daten nicht gut mit der angenommenen Verteilung übereinstimmen. Der Kolmogorov-Smirnov Test ist besonders nützlich, da er keine Annahmen über die spezifische Form der Verteilung macht und sowohl für stetige als auch für diskrete Verteilungen angewendet werden kann.

Peltier-Kühleffekt

Der Peltier-Kühleffekt ist ein thermodynamisches Phänomen, das auftritt, wenn elektrischer Strom durch zwei unterschiedliche Materialien fließt, die an einem Kontaktpunkt verbunden sind. Dieser Effekt führt dazu, dass an einem Ende der Verbindung Wärme entzogen wird, während am anderen Ende Wärme freigesetzt wird. Dies geschieht aufgrund der unterschiedlichen thermischen Eigenschaften der Materialien, typischerweise Halbleiter, und wird oft in sogenannten Peltier-Elementen genutzt.

Die Kühlung an einem Ende kann mathematisch durch die Peltier-Wärme QQQ beschrieben werden, die durch die Formel

Q=ΠIQ = \Pi IQ=ΠI

ausgedrückt wird, wobei Π\PiΠ die Peltier-Koeffizienten und III die Stromstärke ist. Der Peltier-Kühleffekt findet Anwendung in verschiedenen Bereichen, wie z.B. in Kühlschränken, Thermoelektrischen Generatoren und in der Elektronik zur Kühlung von Prozessoren. Besonders vorteilhaft ist, dass dieser Effekt keine beweglichen Teile benötigt und somit wartungsarm ist.

Fisher-Gleichung

Die Fisher-Gleichung beschreibt die Beziehung zwischen nominalen und realen Zinssätzen unter Berücksichtigung der Inflation. Sie lautet:

(1+i)=(1+r)(1+π)(1 + i) = (1 + r)(1 + \pi)(1+i)=(1+r)(1+π)

Dabei ist iii der nominale Zinssatz, rrr der reale Zinssatz und π\piπ die Inflationsrate. Die Gleichung zeigt, dass der nominale Zinssatz die Summe des realen Zinssatzes und der Inflationsrate reflektiert. In der Praxis verwenden Ökonomen oft eine annähernde Formulierung:

i≈r+πi \approx r + \pii≈r+π

Dies bedeutet, dass der nominale Zinssatz etwa gleich der Summe aus realem Zinssatz und Inflationsrate ist, was für viele wirtschaftliche Analysen nützlich ist. Die Fisher-Gleichung ist besonders wichtig für Investoren und Sparer, da sie hilft zu verstehen, wie sich Inflation auf die Kaufkraft von Zinsen auswirkt.

Modellprädiktive Regelung Kostenfunktion

Die Cost Function (Kostenfunktion) in der modellprädiktiven Regelung (Model Predictive Control, MPC) ist ein zentrales Element, das die Qualität der Steuerung bewertet. Sie quantifiziert die Abweichungen zwischen den gewünschten und den tatsächlichen Systemzuständen über einen definierten Zeitrahmen. Die allgemeine Form der Kostenfunktion kann wie folgt dargestellt werden:

J=∑k=0N(xkTQxk+ukTRuk)J = \sum_{k=0}^{N} \left( x_k^T Q x_k + u_k^T R u_k \right)J=k=0∑N​(xkT​Qxk​+ukT​Ruk​)

Hierbei ist JJJ die Gesamtkosten, NNN der Planungs-Horizont, xkx_kxk​ der Zustand des Systems zum Zeitpunkt kkk, uku_kuk​ die Steuergröße und QQQ sowie RRR sind Gewichtungsmatrizen, die die relative Bedeutung der Zustände und Steuerungen festlegen. Ziel der MPC ist es, die Steuerung so zu optimieren, dass die Kostenfunktion minimiert wird, wodurch das System stabilisiert und die gewünschten Leistungsmerkmale erreicht werden. Durch die Anpassung der Parameter in der Kostenfunktion können verschiedene Betriebsziele, wie beispielsweise Energieeffizienz oder Reaktionsgeschwindigkeit, priorisiert werden.

Smith-Prädiktor

Der Smith Predictor ist ein Regelungsalgorithmus, der entwickelt wurde, um die dynamischen Eigenschaften von Systemen mit Verzögerungen zu verbessern. Insbesondere wird er häufig in Regelkreisen eingesetzt, bei denen eine signifikante Verzögerung zwischen der Eingangs- und der Ausgangsreaktion auftritt. Der Hauptansatz des Smith Predictors besteht darin, ein Modell der Verzögerung zu nutzen, um die zukünftigen Werte des Systems vorherzusagen und somit die Regelung zu optimieren. Dies geschieht durch die Schätzung der Systemantwort, sodass der Regler bereits vor dem Erhalt der aktuellen Ausgabe reagieren kann.

Der Smith Predictor kann in zwei Hauptkomponenten unterteilt werden:

  1. Vorhersagemodell: Ein mathematisches Modell, das die Verzögerung und die Dynamik des Systems beschreibt.
  2. Regelungsalgorithmus: Der Regler nutzt die Vorhersagen, um die Steuerung des Systems anzupassen.

Ein typisches Beispiel für die Anwendung des Smith Predictors findet sich in der Prozessindustrie, wo die Verzögerung durch lange Transportleitungen oder Trägheit in den Prozessreaktionen verursacht wird. Durch die Implementierung des Smith Predictors kann die Regelgenauigkeit erheblich verbessert werden, was zu einer effizienteren und stabileren Systemleistung führt.

Optimalsteuerungs-Riccati-Gleichung

Die Riccati-Gleichung ist ein zentrales Element in der optimalen Steuerungstheorie, insbesondere bei der Lösung von Problemen mit quadratischen Kostenfunktionen. Sie beschreibt die Beziehung zwischen dem Zustand eines dynamischen Systems und der optimalen Steuerung, die angewendet werden sollte, um die Kosten zu minimieren. In ihrer klassischen Form wird die Riccati-Gleichung oft als

P=ATP+PA−PBR−1BTP+QP = A^T P + PA - PBR^{-1}B^T P + QP=ATP+PA−PBR−1BTP+Q

formuliert, wobei PPP die Lösung der Gleichung ist, AAA und BBB die Systemmatrizen, QQQ die Kostenmatrix für den Zustand und RRR die Kostenmatrix für die Steuerung darstellen. Die Lösung PPP ist entscheidend für die Bestimmung der optimalen Rückführung der Steuerung, die typischerweise in der Form u=−R−1BTPxu = -R^{-1}B^T P xu=−R−1BTPx gegeben ist. Somit ermöglicht die Riccati-Gleichung die Berechnung der optimalen Steuerung in linearen quadratischen Regler-Problemen, was in vielen Anwendungen wie der Regelungstechnik und der Finanzwirtschaft von Bedeutung ist.