StudierendeLehrende

Nash Equilibrium

Das Nash Equilibrium ist ein zentrales Konzept in der Spieltheorie, das beschreibt, in welchem Zustand Spieler in einem Spiel strategische Entscheidungen treffen, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. In einem Nash-Gleichgewicht wählt jeder Spieler die beste Strategie, gegeben die Strategien der anderen Spieler. Dies bedeutet, dass alle Spieler gleichzeitig optimal handeln, und zwar in dem Sinne, dass ihr Nutzen maximiert wird, solange die anderen Spieler ihre Entscheidungen beibehalten.

Mathematisch lässt sich das Nash-Gleichgewicht wie folgt formulieren: Sei SiS_iSi​ die Strategie des Spielers iii und Ui(S1,S2,…,Sn)U_i(S_1, S_2, \ldots, S_n)Ui​(S1​,S2​,…,Sn​) die Nutzenfunktion. Ein Nash-Gleichgewicht liegt vor, wenn für jeden Spieler iii gilt:

Ui(S1,S2,…,Sn)≥Ui(S1,S2,…,Si−1,Si′,Si+1,…,Sn)U_i(S_1, S_2, \ldots, S_n) \geq U_i(S_1, S_2, \ldots, S_{i-1}, S_i', S_{i+1}, \ldots, S_n)Ui​(S1​,S2​,…,Sn​)≥Ui​(S1​,S2​,…,Si−1​,Si′​,Si+1​,…,Sn​)

für alle möglichen Strategien Si′S_i'Si′​ von Spieler iii. Ein bekanntes Beispiel für ein Nash-Gleichgewicht ist das Gefangenendilemma, wo zwei Gefangene, die unabhängig entscheiden, ob sie gestehen oder schweigen, im Gleich

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Edmonds-Karp-Algorithmus

Der Edmonds-Karp Algorithmus ist ein spezifischer Implementierungsansatz des Ford-Fulkerson-Algorithmus zur Lösung des Maximum-Flow-Problems in Flussnetzwerken. Er verwendet die Breitensuche (BFS), um den maximalen Fluss von einer Quelle zu einer Senke zu finden, indem er wiederholt nach augmentierenden Pfaden sucht. Diese Pfade sind solche, die noch über Kapazitäten verfügen, um den Fluss zu erhöhen. Der Algorithmus hat eine Zeitkomplexität von O(V⋅E2)O(V \cdot E^2)O(V⋅E2), wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten im Netzwerk darstellt. Bei jedem Schritt wird der Fluss entlang des gefundenen Pfades erhöht, bis kein weiterer augmentierender Pfad mehr gefunden werden kann. Damit bietet der Edmonds-Karp Algorithmus eine effiziente Methode zur Bestimmung des maximalen Flusses in einem Netzwerk.

Hausdorff-Dimension

Die Hausdorff-Dimension ist ein Konzept aus der Geometrie und der Maßtheorie, das verwendet wird, um die Dimension einer Menge zu bestimmen, die nicht unbedingt in den klassischen Dimensionen (z. B. 0, 1, 2, 3) klassifiziert werden kann. Sie erweitert die Idee der Dimension über die intuitive Vorstellung von Längen, Flächen und Volumina hinaus. Die Hausdorff-Dimension wird definiert durch die Verwendung von Hausdorff-Maßen, die die "Größe" einer Menge in Abhängigkeit von ihrer Struktur messen.

Um die Hausdorff-Dimension einer Menge AAA zu bestimmen, betrachtet man die sss-dimensionale Hausdorff-Maß Hs(A)H^s(A)Hs(A) und analysiert, wie sich diese Maße verhalten, wenn sss variiert. Die Hausdorff-Dimension dim⁡H(A)\dim_H(A)dimH​(A) ist dann das infimum aller sss (d. h. der kleinste Wert von sss), für das das Hausdorff-Maß Hs(A)H^s(A)Hs(A) gleich Null ist. Eine Menge kann also eine nicht-ganzzahlige Dimension haben, wie zum Beispiel die Cantor-Menge, die eine Hausdorff-Dimension von etwa 0,6309 hat, was zeigt, dass die Dimensionen in der fraktalen Geometr

Nichols-Diagramm

Ein Nichols Chart ist ein grafisches Werkzeug, das in der Regel in der Regelungstechnik verwendet wird, um die Stabilität und das Verhalten von dynamischen Systemen zu analysieren. Es stellt die Bode-Diagramme von offenen Schleifen und die Stabilitätsmargen in einem einzigen Diagramm dar. Die x-Achse zeigt die Frequenz in logarithmischer Skala, während die y-Achse die Verstärkung in dB und die Phase in Grad darstellt. Dies ermöglicht Ingenieuren, die Betriebsbedingungen eines Systems zu visualisieren und zu bestimmen, ob das System stabil ist oder nicht, indem sie die Kurven der offenen Schleifenübertragungsfunktion und der geschlossenen Schleifenübertragungsfunktion vergleichen. Ein weiterer Vorteil des Nichols Charts ist, dass es einfach ist, Reglerdesigns zu testen und zu optimieren, indem man die Position der Kurven im Diagramm anpasst.

Computational General Equilibrium Models

Computational General Equilibrium (CGE) Modelle sind leistungsstarke Werkzeuge in der Wirtschaftswissenschaft, die zur Analyse der Wechselwirkungen zwischen verschiedenen Märkten und Sektoren einer Volkswirtschaft dienen. Diese Modelle basieren auf der Annahme, dass alle Märkte gleichzeitig im Gleichgewicht sind, was bedeutet, dass Angebot und Nachfrage in jedem Markt übereinstimmen. Ein typisches CGE-Modell berücksichtigt verschiedene Akteure, wie Haushalte, Unternehmen und den Staat, und analysiert deren Entscheidungen in Bezug auf Produktion, Konsum und Handel.

Die mathematische Grundlagen dieser Modelle sind oft in Form von Gleichungen formuliert, die die Beziehungen zwischen den Variablen darstellen. Zum Beispiel kann die Produktionsfunktion eines Unternehmens durch die Gleichung

Y=F(K,L)Y = F(K, L)Y=F(K,L)

beschrieben werden, wobei YYY die produzierte Menge, KKK das Kapital und LLL die Arbeit darstellt. CGE-Modelle ermöglichen es Ökonomen, die Auswirkungen von politischen Maßnahmen, technologischen Veränderungen oder externen Schocks auf die gesamte Wirtschaft zu simulieren, wodurch sie wertvolle Einblicke in die Komplexität wirtschaftlicher Systeme bieten.

Laffer-Kurve-Steuerung

Die Laffer-Kurve ist ein wirtschaftliches Konzept, das den Zusammenhang zwischen Steuersätzen und den tatsächlich erzielten Steuereinnahmen beschreibt. Sie zeigt, dass es einen optimalen Steuersatz gibt, bei dem die Einnahmen maximiert werden. Wenn die Steuersätze zu niedrig sind, werden die Einnahmen gering sein, aber auch wenn sie zu hoch sind, können die Einnahmen sinken, da hohe Steuersätze die Anreize zur Arbeit und Investition verringern. Die Kurve kann mathematisch beschrieben werden, indem man den Steuersatz ttt gegen die Steuereinnahmen R(t)R(t)R(t) abbildet, wobei die Funktion zunächst steigt und dann wieder fällt. Dies impliziert, dass es eine umgekehrte Beziehung zwischen Steuersätzen und wirtschaftlicher Aktivität gibt, wenn diese über einen bestimmten Punkt hinaus ansteigen. Das Verständnis der Laffer-Kurve ist besonders wichtig für Entscheidungsträger, die die Auswirkungen von Steuerpolitik auf die Wirtschaft analysieren möchten.

Skip-Graph

Ein Skip Graph ist eine Datenstruktur, die für die effiziente Verarbeitung und den schnellen Zugriff auf große Mengen von Daten entwickelt wurde. Sie kombiniert Elemente von sowohl verknüpften Listen als auch von Baumstrukturen, um eine flexible und skalierbare Methode zur Organisation von Informationen zu bieten. In einem Skip Graph sind die Daten in Knoten organisiert, die durch mehrere Ebenen von Zeigern miteinander verbunden sind. Dies ermöglicht es, das Durchsuchen von Daten zu optimieren, indem man in höheren Ebenen "überspringt" und so die Anzahl der benötigten Vergleiche reduziert.

Die Hauptmerkmale eines Skip Graphs umfassen:

  • Effiziente Suche: Die durchschnittliche Zeitkomplexität für die Suche in einem Skip Graph beträgt O(log⁡n)O(\log n)O(logn).
  • Skalierbarkeit: Skip Graphs können leicht erweitert oder verkleinert werden, ohne dass die gesamte Struktur neu organisiert werden muss.
  • Robustheit: Sie sind widerstandsfähig gegen Knotenfehler, da die Daten auf mehrere Knoten verteilt sind.

Diese Eigenschaften machen Skip Graphs besonders nützlich in verteilten Systemen und Peer-to-Peer-Netzwerken.