StudierendeLehrende

Quantum Cryptography

Quantum Cryptography ist ein innovativer Ansatz zur Sicherung von Informationen, der auf den Prinzipien der Quantenmechanik basiert. Der bekannteste Algorithmus in diesem Bereich ist das Quantum Key Distribution (QKD), das es zwei Parteien ermöglicht, einen geheimen Schlüssel zu erstellen, der gegen Abhörversuche abgesichert ist. Dies geschieht durch die Verwendung von Quantenbits oder Qubits, die in Überlagerungszuständen existieren können und deren Messung den Zustand beeinflusst. Ein zentrales Konzept ist das No-Cloning-Theorem, das besagt, dass es unmöglich ist, ein unbekanntes Quantenobjekt exakt zu kopieren, was Abhörern die Möglichkeit nimmt, den Schlüssel unentdeckt zu duplizieren. Wenn ein Angreifer versucht, die Quantenkommunikation abzuhören, führt dies zu messbaren Veränderungen im System, die sofort erkannt werden können. Dadurch bietet Quantum Cryptography ein hohes Maß an Sicherheit, das über konventionelle kryptografische Methoden hinausgeht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Entropietrennung

Der Begriff Entropy Split stammt aus der Informationstheorie und wird häufig in der Entscheidungsbaum-Lernalgorithmen verwendet, um die beste Aufteilung von Daten zu bestimmen. Die Entropie ist ein Maß für die Unordnung oder Unsicherheit in einem Datensatz. Bei einer Aufteilung wird die Entropie vor und nach der Aufteilung berechnet, um zu bestimmen, wie gut die Aufteilung die Unsicherheit verringert.

Die Entropie H(S)H(S)H(S) eines Datensatzes SSS wird durch die Formel

H(S)=−∑i=1cpilog⁡2(pi)H(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)H(S)=−i=1∑c​pi​log2​(pi​)

definiert, wobei pip_ipi​ der Anteil der Klasse iii im Datensatz und ccc die Anzahl der Klassen ist. Bei einem Entropy Split wird der Informationsgewinn IGIGIG berechnet, um die Effektivität einer Aufteilung zu bewerten. Der Informationsgewinn wird als Differenz der Entropie vor und nach der Aufteilung berechnet:

IG(S,A)=H(S)−∑v∈Values(A)∣Sv∣∣S∣H(Sv)IG(S, A) = H(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} H(S_v)IG(S,A)=H(S)−v∈Values(A)∑​∣S∣∣Sv​∣​H(Sv​)

Hierbei ist AAA die Attribut, nach dem aufgeteilt wird, und SvS_vSv​ ist die Teilmenge von $

Lyapunov-Direktmethode-Stabilität

Die Lyapunov-Direktmethode ist ein zentraler Ansatz zur Analyse der Stabilität dynamischer Systeme. Sie basiert auf der Konstruktion einer geeigneten Lyapunov-Funktion V(x)V(x)V(x), die positiv definit und abnehmend ist. Eine Funktion ist positiv definit, wenn V(x)>0V(x) > 0V(x)>0 für alle x≠0x \neq 0x=0 und V(0)=0V(0) = 0V(0)=0. Um die Stabilität des Gleichgewichtspunkts x=0x = 0x=0 zu zeigen, muss die zeitliche Ableitung V˙(x)\dot{V}(x)V˙(x) negativ definit sein, d.h., V˙(x)<0\dot{V}(x) < 0V˙(x)<0 für alle x≠0x \neq 0x=0. Wenn diese Bedingungen erfüllt sind, kann man schließen, dass das System asymptotisch stabil ist. Diese Methode ist besonders nützlich, da sie oft ohne die Lösung der dynamischen Gleichungen auskommt und somit effizient für eine Vielzahl von Systemen angewendet werden kann.

Kosaraju's SCC-Erkennung

Kosaraju’s Algorithmus ist ein effizienter Ansatz zur Erkennung von stark zusammenhängenden Komponenten (SCCs) in gerichteten Graphen. Der Algorithmus besteht aus zwei Hauptschritten: Zuerst wird eine Tiefensuche (DFS) auf dem ursprünglichen Graphen durchgeführt, um die Knoten in der Reihenfolge ihrer Fertigstellung zu erfassen. Anschließend wird der Graph umgekehrt, indem die Richtungen aller Kanten invertiert werden. In einem zweiten DFS, das in der Reihenfolge der abgeschlossenen Knoten aus dem ersten Schritt durchgeführt wird, werden dann die SCCs identifiziert.

Die Laufzeit des Algorithmus beträgt O(V+E)O(V + E)O(V+E), wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten im Graphen sind. Diese Effizienz macht den Algorithmus besonders nützlich für große Netzwerke in der Informatik und Mathematik.

Lucas-Kritik erklärt

Die Lucas-Kritik, benannt nach dem Ökonomen Robert Lucas, ist eine wichtige Theorie in der Makroökonomie, die besagt, dass die Wirtschaftspolitik nicht effektiv beurteilt werden kann, wenn man die Erwartungen der Wirtschaftsteilnehmer ignoriert. Lucas argumentiert, dass traditionelle ökonomische Modelle oft darauf basieren, dass vergangene Daten verlässlich sind, um zukünftige politische Maßnahmen zu bewerten. Dies führt zu einer falschen Annahme, da die Menschen ihre Erwartungen anpassen, wenn sie neue Informationen über die Politik erhalten.

Ein zentrales Konzept der Lucas-Kritik ist, dass die Parameter eines Modells, das für die Analyse von Politiken verwendet wird, variieren können, wenn sich die Politik selbst ändert. Dies bedeutet, dass die Auswirkungen einer bestimmten Politik nicht vorhergesagt werden können, ohne die Anpassungen der Erwartungen zu berücksichtigen. Daher ist es notwendig, Modelle zu entwickeln, die rationale Erwartungen einbeziehen, um die tatsächlichen Auswirkungen von wirtschaftspolitischen Entscheidungen realistisch zu erfassen.

Panelregression

Panel Regression ist eine statistische Methode, die sowohl querschnittliche als auch zeitliche Daten kombiniert. Sie ermöglicht es, die Dynamik von Variablen über Zeit und zwischen Individuen oder Gruppen zu analysieren. Ein häufiges Ziel der Panel Regression ist es, Effekte zu schätzen, die durch unbeobachtete Heterogenität entstehen können, indem sowohl individuelle als auch zeitliche Effekte berücksichtigt werden. Es gibt verschiedene Ansätze zur Durchführung von Panel Regression, darunter das fixed effects- und random effects-Modell. Das fixed effects-Modell kontrolliert für unbeobachtete Variablen, die konstant sind, während das random effects-Modell davon ausgeht, dass diese unbeobachteten Variablen zufällig sind und nicht mit den erklärenden Variablen korrelieren. Ein Beispiel für die Anwendung wäre die Analyse des Einflusses von Bildung auf das Einkommen über verschiedene Jahre und verschiedene Personen hinweg.

Verstärkendes Q-Learning

Reinforcement Q-Learning ist ein verstärkendes Lernen-Verfahren, das darauf abzielt, eine optimale Strategie für einen Agenten in einer gegebenen Umgebung zu erlernen. Der Agent interagiert mit der Umgebung, indem er Aktionen auswählt und dafür Rückmeldungen in Form von Belohnungen erhält. Der Kern des Q-Learning-Algorithmus ist die Q-Funktion, die den Wert einer bestimmten Aktion in einem bestimmten Zustand beschreibt. Diese Q-Werte werden iterativ aktualisiert, basierend auf der Formel:

Q(s,a)←Q(s,a)+α(r+γmax⁡a′Q(s′,a′)−Q(s,a))Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)Q(s,a)←Q(s,a)+α(r+γa′max​Q(s′,a′)−Q(s,a))

Hierbei steht sss für den aktuellen Zustand, aaa für die gewählte Aktion, rrr für die erhaltene Belohnung, s′s's′ für den nächsten Zustand, α\alphaα für die Lernrate und γ\gammaγ für den Diskontfaktor. Durch ständiges Lernen und Anpassen der Q-Werte kann der Agent schließlich eine Strategie entwickeln, die es ihm ermöglicht, in der Umgebung maximale Belohnungen zu erzielen.