StudierendeLehrende

Prospect Theory Reference Points

Die Prospect Theory wurde von Daniel Kahneman und Amos Tversky entwickelt und beschreibt, wie Menschen Entscheidungen unter Risiko und Unsicherheit treffen. Ein zentrales Konzept dieser Theorie sind die Referenzpunkte, die als Ausgangsbasis für die Bewertung von Gewinnen und Verlusten dienen. Menschen neigen dazu, ihren Nutzen nicht auf absolute Ergebnisse zu beziehen, sondern auf die Abweichung von einem bestimmten Referenzpunkt, der oft der Status quo ist.

So empfinden Individuen Gewinne als weniger wertvoll, wenn sie über diesem Referenzpunkt liegen, während Verluste unter diesem Punkt als schmerzhafter empfunden werden. Dies führt zu einem Verhalten, das als Verlustaversion bezeichnet wird, was bedeutet, dass Verluste etwa doppelt so stark gewichtet werden wie gleich große Gewinne. Mathematisch lässt sich die Nutzenfunktion der Prospect Theory oft durch eine S-förmige Kurve darstellen, die sowohl die Asymmetrie zwischen Gewinnen und Verlusten als auch die abnehmende Sensitivität für extreme Werte verdeutlicht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Computer Vision Deep Learning

Computer Vision Deep Learning ist ein Teilbereich der künstlichen Intelligenz, der sich mit der automatischen Analyse und Interpretation von Bildern und Videos beschäftigt. Durch den Einsatz von neuronalen Netzen, insbesondere von tiefen neuronalen Netzen (Deep Neural Networks), werden komplexe Muster und Merkmale in visuellen Daten erkannt. Ein häufig verwendetes Modell in diesem Bereich ist das Convolutional Neural Network (CNN), das speziell für die Verarbeitung von Bilddaten entwickelt wurde. Diese Netzwerke lernen, indem sie eine große Menge an annotierten Bildern analysieren und die zugrunde liegenden Merkmale extrahieren, um Aufgaben wie Bilderkennung, Objektdetektion oder Bildsegmentierung durchzuführen.

Die mathematische Grundlage dieser Technologien basiert oft auf der Optimierung von Verlustfunktionen, typischerweise dargestellt durch:

L(y,f(x))=1n∑i=1n(yi−f(xi))2L(y, f(x)) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2L(y,f(x))=n1​i=1∑n​(yi​−f(xi​))2

wobei LLL die Verlustfunktion, yyy die tatsächlichen Werte und f(x)f(x)f(x) die Vorhersagen des Modells sind. Die Anwendung von Deep Learning in der Computer Vision hat zu bedeutenden Fortschritten in Bereichen wie autonomem Fahren, medizinischer Bilddiagnostik und Sicherheitssystemen geführt.

Edgeworth-Box

Die Edgeworth Box ist ein grafisches Werkzeug in der Mikroökonomie, das verwendet wird, um die Allokation von Ressourcen zwischen zwei Individuen oder Gruppen darzustellen. Sie zeigt die möglichen Kombinationen von zwei Gütern, die von diesen Individuen konsumiert werden können. Die Box hat eine quadratische Form, wobei jede Achse die Menge eines Gutes darstellt, das von einem der beiden Akteure konsumiert wird.

Innerhalb der Box können die Indifferenzkurven beider Individuen eingezeichnet werden, die die verschiedenen Konsumkombinationen zeigen, bei denen jeder Akteur den gleichen Nutzen erzielt. Der Punkt, an dem sich die Indifferenzkurven schneiden, stellt einen Pareto-effizienten Zustand dar, bei dem keine Umverteilung der Ressourcen möglich ist, ohne dass einer der Akteure schlechter gestellt wird. In der Edgeworth Box können auch die Konzepte der Handelsgewinne und der Kooperation visualisiert werden, indem gezeigt wird, wie die Individuen durch Tausch ihre Wohlfahrt verbessern können.

Helmholtz-Resonanz

Die Helmholtz-Resonanz beschreibt das Phänomen, bei dem ein geschlossener Hohlraum, wie zum Beispiel eine Flasche oder ein Lautsprecher, in Resonanz mit einer bestimmten Frequenz schwingt, wenn Luft durch eine Öffnung in diesen Hohlraum strömt. Diese Resonanz tritt auf, weil die Luft im Inneren des Hohlraums und die Luft außen in Wechselwirkung treten und dabei eine stehende Welle bilden. Die Frequenz der Helmholtz-Resonanz kann durch die Formel

f=c2πAV⋅Lf = \frac{c}{2\pi} \sqrt{\frac{A}{V \cdot L}}f=2πc​V⋅LA​​

bestimmt werden, wobei ccc die Schallgeschwindigkeit, AAA die Fläche der Öffnung, VVV das Volumen des Hohlraums und LLL die effektive Länge des Luftkanals ist. Dieses Prinzip findet Anwendung in verschiedenen Bereichen, darunter Akustik, Musikinstrumentenbau und sogar Architektur. Es erklärt, warum bestimmte Formen und Größen von Hohlräumen besondere Klangqualitäten erzeugen können und ist entscheidend für das Design von Lautsprechern und anderen akustischen Geräten.

Poincaré-Rückkehrsatz

Das Poincaré-Rückkehr-Theorem ist ein fundamentales Ergebnis in der dynamischen Systemtheorie, das von dem französischen Mathematiker Henri Poincaré formuliert wurde. Es besagt, dass in einem geschlossenen, zeitlich invarianten System, das eine endliche Energie hat, fast jede Trajektorie nach einer bestimmten Zeit wieder in einen beliebigen kleinen Bereich ihrer Anfangsposition zurückkehrt. Genauer gesagt, wenn wir ein System betrachten, das in einem kompakten Phasenraum operiert, dann gibt es für jedes ϵ>0\epsilon > 0ϵ>0 einen Zeitpunkt TTT, so dass der Zustand des Systems wieder innerhalb einer ϵ\epsilonϵ-Umgebung der Ausgangsbedingungen liegt.

Die Implikationen dieses Theorems sind tiefgreifend, insbesondere in der statistischen Mechanik und der Ergodentheorie, da sie die Idee unterstützen, dass Systeme über lange Zeiträume hinweg ein gewisses Maß an Zufälligkeit und Wiederholung aufweisen. Es verdeutlicht auch, dass deterministische Systeme nicht unbedingt vorhersehbar sind, da sie trotz ihrer deterministischen Natur komplexe und chaotische Verhaltensweisen zeigen können.

Slutsky-Gleichung

Die Slutsky-Gleichung ist eine fundamentale Beziehung in der Mikroökonomie, die die Auswirkungen von Preisänderungen auf die Nachfrage nach Gütern beschreibt. Sie zerlegt die Gesamtwirkung einer Preisänderung in zwei Komponenten: den Substitutionseffekt und den Einkommenseffekt. Der Substitutionseffekt zeigt, wie sich die Nachfrage nach einem Gut ändert, wenn der Preis sinkt und der Konsument zu diesem Gut substituiert, während der Einkommenseffekt zeigt, wie sich die Nachfrage ändert, weil sich das reale Einkommen des Konsumenten aufgrund der Preisänderung verändert.

Mathematisch wird die Slutsky-Gleichung wie folgt ausgedrückt:

∂xi∂pj=∂hi∂pj−xj∂xi∂m\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - x_j \frac{\partial x_i}{\partial m}∂pj​∂xi​​=∂pj​∂hi​​−xj​∂m∂xi​​

Hierbei steht xix_ixi​ für die nachgefragte Menge des Gutes iii, pjp_jpj​ für den Preis des Gutes jjj und mmm für das Einkommen des Konsumenten. Die Gleichung verdeutlicht, dass die Veränderung der Nachfrage nach Gut iii bezüglich der Preisänderung von Gut jjj sowohl von der Veränderung der optimalen Nachfrage als auch von der Veränderung des Einkommens abhängt. Die Slutsky

PID-Regelung

PID Tuning bezieht sich auf den Prozess der Anpassung der Parameter eines PID-Reglers (Proportional, Integral, Derivative), um eine optimale Regelung eines Systems zu gewährleisten. Die drei Hauptkomponenten des PID-Reglers sind:

  • Proportional (P): Beeinflusst die Regelung basierend auf der aktuellen Abweichung vom Sollwert.
  • Integral (I): Berücksichtigt die Summe der vergangenen Abweichungen, um langfristige Fehler zu eliminieren.
  • Derivative (D): Reagiert auf die Geschwindigkeit der Fehleränderung, um Überschwingungen zu minimieren.

Ein effektives Tuning der PID-Parameter verbessert die Reaktionszeit und Stabilität des Systems. Typische Methoden zur Durchführung des Tuning sind die Ziegler-Nichols-Methode oder die schrittweise Anpassung, bei denen die Parameter schrittweise verändert werden, um die Systemantwort zu beobachten und zu optimieren.