StudierendeLehrende

Regge Theory

Die Regge-Theorie ist ein Konzept in der theoretischen Physik, das die Wechselwirkungen von Teilchen in der Hochenergie-Physik beschreibt. Sie wurde in den 1950er Jahren von Tullio Regge entwickelt und basiert auf dem Ansatz, dass die Streuamplituden von Teilchen nicht nur von den Energie- und Impulsübertragungen, sondern auch von den Trajektorien abhängen, die die Teilchen im komplexen Impulsraum verfolgen. Diese Trajektorien, bekannt als Regge-Trajektorien, sind Kurven, die die Beziehung zwischen dem Spin JJJ eines Teilchens und dem Quadrat des Impulses ttt beschreiben. Mathematisch wird dies oft durch den Ausdruck J(t)=J0+α′tJ(t) = J_0 + \alpha' tJ(t)=J0​+α′t dargestellt, wobei J0J_0J0​ der Spin des Teilchens bei t=0t = 0t=0 ist und α′\alpha'α′ die Steigung der Trajektorie im (J,t)(J,t)(J,t)-Diagramm beschreibt. Regge-Theorie hat nicht nur zur Erklärung von Hadronen-Streuung beigetragen, sondern auch zur Entwicklung des Stringtheorie-Ansatzes, indem sie eine tiefere Verbindung zwischen der Geometrie des Raums und den Eigenschaften von Teilchen aufzeigt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Zufallswalk-Hypothese

Die Random Walk Hypothesis besagt, dass die Preisbewegungen eines finanziellen Vermögenswerts wie Aktien zufällig sind und somit nicht vorhersehbar. Dies bedeutet, dass zukünftige Preisänderungen unabhängig von vergangenen Preisbewegungen sind, was zu der Annahme führt, dass die Märkte effizient sind. In einem solchen Modell könnte man sagen, dass die Wahrscheinlichkeit, dass der Preis eines Vermögenswerts steigt oder fällt, gleich ist, was mathematisch als P(Xt+1>Xt)=P(Xt+1<Xt)=0,5P(X_{t+1} > X_t) = P(X_{t+1} < X_t) = 0,5P(Xt+1​>Xt​)=P(Xt+1​<Xt​)=0,5 formuliert werden kann. Diese Hypothese hat wichtige Implikationen für Investoren, da sie die Effektivität von Strategien wie technischer Analyse in Frage stellt. Kritiker argumentieren jedoch, dass es Muster oder Trends gibt, die durch bestimmte Marktbedingungen beeinflusst werden können, was die Annahme der völligen Zufälligkeit infrage stellt.

Stackelberg Leader

Der Stackelberg Leader ist ein Konzept aus der Spieltheorie und der Wirtschaftswissenschaft, das eine bestimmte Rolle in einem duopolaren Markt beschreibt. In einem Stackelberg-Modell agiert der Leader zuerst und trifft Entscheidungen, wie z.B. die Menge der produzierten Güter oder den Preis. Der Nachfolger, auch Stackelberg Follower genannt, beobachtet die Entscheidungen des Leaders und reagiert darauf, was ihm ermöglicht, seine eigene Strategie optimal anzupassen. Diese Führungsstruktur führt oft zu einem Wettbewerbsvorteil für den Leader, da er die Marktbedingungen und die Reaktionen des Followers antizipieren kann.

Mathematisch kann das Gleichgewicht in einem Stackelberg-Modell durch die Maximierung der Gewinnfunktionen der beiden Unternehmen dargestellt werden, wobei der Leader zuerst wählt und der Follower seine Reaktion darauf anpasst:

max⁡LeaderπL=P(Q)⋅QL−C(QL)\max_{\text{Leader}} \pi_L = P(Q) \cdot Q_L - C(Q_L)Leadermax​πL​=P(Q)⋅QL​−C(QL​) max⁡FollowerπF=P(Q)⋅QF−C(QF)\max_{\text{Follower}} \pi_F = P(Q) \cdot Q_F - C(Q_F)Followermax​πF​=P(Q)⋅QF​−C(QF​)

Hierbei ist P(Q)P(Q)P(Q) der Preis, der von der Gesamtmenge QQQ abhängt, QLQ_LQL​ und QFQ_FQF​ sind die Produktionsmengen des Leaders und Followers, und CCC ist die Kostenfunktion.

Annahmen des Solow-Wachstumsmodells

Das Solow-Wachstumsmodell basiert auf mehreren grundlegenden Annahmen, die das Verständnis von wirtschaftlichem Wachstum und Kapitalakkumulation erleichtern. Erstens wird angenommen, dass die Produktion durch eine Cobb-Douglas-Produktionsfunktion beschrieben werden kann, die Kapital (KKK) und Arbeit (LLL) kombiniert:

Y=F(K,L)=KαL1−αY = F(K, L) = K^\alpha L^{1-\alpha}Y=F(K,L)=KαL1−α

Hierbei ist α\alphaα der Kapitalanteil in der Produktion. Zweitens geht das Modell von konstanten Skalenerträgen aus, was bedeutet, dass eine proportionale Erhöhung von Kapital und Arbeit zu einer proportionalen Erhöhung der Produktion führt. Drittens wird angenommen, dass die Ersparnisrate konstant ist und ein fester Anteil des Einkommens gespart wird. Viertens wird die Technologie als exogen betrachtet, was bedeutet, dass technologische Fortschritte nicht im Modell erklärt werden, sondern von außen hinzukommen. Schließlich wird angenommen, dass die Bevölkerung mit einer konstanten Rate wächst, was die Arbeitskräfte und damit die Produktionskapazität beeinflusst.

Poisson-Verteilung

Die Poisson-Verteilung ist eine probabilistische Verteilung, die häufig verwendet wird, um die Anzahl der Ereignisse in einem festen Intervall zu modellieren, wenn diese Ereignisse unabhängig voneinander auftreten. Sie wird durch einen Parameter λ\lambdaλ (Lambda) charakterisiert, der die durchschnittliche Anzahl der Ereignisse pro Intervall angibt. Die Wahrscheinlichkeit, dass genau kkk Ereignisse in einem Intervall auftreten, wird durch die Formel gegeben:

P(X=k)=λke−λk!P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}P(X=k)=k!λke−λ​

Hierbei ist eee die Basis des natürlichen Logarithmus und k!k!k! die Fakultät von kkk. Die Poisson-Verteilung findet in verschiedenen Bereichen Anwendung, wie z.B. in der Verkehrsplanung zur Modellierung der Anzahl der Fahrzeuge, die eine Kreuzung in einer bestimmten Zeitspanne passieren, oder in der Telekommunikation zur Analyse von Anrufen, die in einem bestimmten Zeitraum eingehen. Ein wichtiges Merkmal der Poisson-Verteilung ist, dass sie gut geeignet ist für Situationen, in denen die Ereignisse selten sind und die Zeiträume, in denen sie auftreten, relativ kurz sind.

Preisstarrheit

Price Stickiness, oder** Preisrigidität**, beschreibt das Phänomen, dass Preise von Gütern und Dienstleistungen sich nicht sofort an Veränderungen der Marktbedingungen anpassen. Dies kann verschiedene Ursachen haben, darunter Verträge, Psychologie der Konsumenten und Kosten der Preisanpassung. Beispielsweise können Unternehmen zögern, Preise zu senken, auch wenn die Nachfrage sinkt, aus Angst, das Wahrnehmungsbild ihrer Marke zu schädigen.

Die Folgen von Preisrigidität können erhebliche wirtschaftliche Auswirkungen haben, insbesondere in Zeiten von Rezesssionen oder Inflation. In solchen Situationen kann die langsame Anpassung der Preise zu einem Ungleichgewicht zwischen Angebot und Nachfrage führen, was zu Ressourcenineffizienz und Marktinstabilität führen kann. In vielen Modellen der Makroökonomie wird Price Stickiness als einen der Hauptgründe für die kurzfristige Ineffizienz von Märkten betrachtet.

Adaptive Erwartungen Hypothese

Die Adaptive Expectations Hypothesis ist ein wirtschaftswissenschaftliches Konzept, das beschreibt, wie Individuen ihre Erwartungen über zukünftige wirtschaftliche Variablen, wie Preise oder Einkommen, anpassen. Laut dieser Hypothese basieren die Erwartungen auf den vergangenen Erfahrungen und Entwicklungen, wobei die Anpassung schrittweise erfolgt. Das bedeutet, dass Individuen ihre Erwartungen nicht sofort aktualisieren, sondern sich auf einen gleitenden Durchschnitt der vergangenen Werte stützen. Mathematisch kann dies durch die Gleichung

Et=Et−1+α(Xt−1−Et−1)E_t = E_{t-1} + \alpha (X_{t-1} - E_{t-1})Et​=Et−1​+α(Xt−1​−Et−1​)

dargestellt werden, wobei EtE_tEt​ die erwartete Variable, Xt−1X_{t-1}Xt−1​ der tatsächliche Wert der Variablen in der letzten Periode und α\alphaα ein Anpassungsfaktor ist, der zwischen 0 und 1 liegt. Diese Annahme impliziert, dass die Anpassung langsamer ist, je kleiner der Wert von α\alphaα ist. Die Hypothese wird oft verwendet, um das Verhalten von Märkten zu analysieren, insbesondere in Bezug auf Inflationserwartungen und Preisbildung.