StudierendeLehrende

Samuelson’S Multiplier-Accelerator

Samuelson’s Multiplier-Accelerator ist ein wirtschaftliches Modell, das die Wechselwirkungen zwischen Investitionen und Konsum in einer Volkswirtschaft beschreibt. Der Multiplikator bezieht sich auf den Effekt, den eine anfängliche Veränderung der Ausgaben auf das Gesamteinkommen hat. Wenn beispielsweise die Regierung die Ausgaben erhöht, steigt das Einkommen der Haushalte, was zu einem Anstieg des Konsums führt. Dieser Anstieg des Konsums hat wiederum Auswirkungen auf die Nachfrage nach Gütern, was die Unternehmen veranlasst, mehr zu investieren.

Der Beschleuniger hingegen beschreibt, wie die Investitionen der Unternehmen in Reaktion auf Veränderungen der Nachfrage angepasst werden. Eine steigende Nachfrage führt zu einer höheren Investitionsrate, was die Wirtschaft weiter ankurbeln kann. Mathematisch wird der Effekt durch die Gleichung Y=k⋅ΔGY = k \cdot \Delta GY=k⋅ΔG dargestellt, wobei YYY das Gesamteinkommen, kkk der Multiplikator und ΔG\Delta GΔG die Veränderung der Staatsausgaben ist. In Kombination zeigen der Multiplikator und der Beschleuniger, wie Veränderungen in einem Bereich der Wirtschaft weitreichende Auswirkungen auf andere Bereiche haben können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dropout-Regularisierung

Dropout Regularization ist eine Technik zur Vermeidung von Überanpassung (Overfitting) in neuronalen Netzen. Bei jedem Trainingsepoch wird zufällig eine bestimmte Anzahl von Neuronen in einem bestimmten Schicht deaktiviert, was bedeutet, dass ihre Ausgaben auf null gesetzt werden. Diese Deaktivierung geschieht mit einer bestimmten Wahrscheinlichkeit, oft als Hyperparameter ppp bezeichnet, wobei 0<p<10 < p < 10<p<1. Durch diese Methode wird das Modell gezwungen, robuster zu lernen, da es nicht auf spezifische Neuronen angewiesen ist.

Der Vorteil von Dropout liegt darin, dass es das Netzwerk dazu bringt, stabilere Merkmale zu lernen, die nicht von einzelnen Neuronen abhängen. Während der Testphase werden alle Neuronen aktiviert, jedoch wird die Ausgabe jedes Neurons mit der Wahrscheinlichkeit ppp skaliert, um die während des Trainings angewandte Störung zu berücksichtigen. Dies führt zu einer signifikanten Verbesserung der Generalisierungsfähigkeit des Modells auf unbekannten Daten.

Wkb-Approximation

Die WKB-Approximation (Wentzel-Kramers-Brillouin) ist eine Methode zur Lösung von quantenmechanischen Differentialgleichungen, insbesondere der Schrödinger-Gleichung, in Situationen, in denen die Wellenlänge der Teilchen klein im Vergleich zu den charakteristischen Längenskalen der Potentiallandschaft ist. Diese Approximation geht davon aus, dass die Wellenfunktion als exponentielle Funktion dargestellt werden kann, wobei die Phase der Wellenfunktion stark variiert und die Amplitude langsam ändert. Mathematisch wird dies häufig durch die Annahme einer Lösung der Form

ψ(x)=A(x)eiS(x)/ℏ\psi(x) = A(x) e^{i S(x)/\hbar}ψ(x)=A(x)eiS(x)/ℏ

ausgedrückt, wobei A(x)A(x)A(x) die Amplitude und S(x)S(x)S(x) die Phase ist. Die WKB-Approximation ist besonders nützlich in der Quantenmechanik, um die Eigenschaften von Teilchen in klassischen Potentialen zu untersuchen, und sie ermöglicht die Berechnung von Tunnelprozessen sowie von Energieeigenzuständen in quantisierten Systemen. Sie ist jedoch nur in bestimmten Bereichen anwendbar, insbesondere wenn die Ableitungen von S(x)S(x)S(x) und A(x)A(x)A(x) klein sind, was die Gültigkeit der Approximation einschränkt.

Bürstenloser Gleichstrommotorsteuerung

Die steuerung von bürstenlosen Gleichstrommotoren (BLDC-Motoren) erfolgt durch den Einsatz von elektronischen Schaltungen, die den Stromfluss zu den Motorwicklungen gezielt steuern. Im Gegensatz zu bürstenbehafteten Motoren, bei denen mechanische Bürsten den Strom zu den Wicklungen leiten, verwenden BLDC-Motoren elektromagnetische Felder, die durch Sensoren oder Sensorless-Techniken erzeugt werden. Die Regelung erfolgt typischerweise über Pulsweitenmodulation (PWM), um die Spannung und den Strom präzise zu steuern und somit das Drehmoment und die Drehzahl des Motors zu regulieren.

Diese Systeme bestehen oft aus einem Steuergerät, das die Motorposition ermittelt, und einem Treiber, der die Wicklungen entsprechend ansteuert. Die Vorteile von BLDC-Motoren umfassen eine höhere Effizienz, längere Lebensdauer und geringere Geräuschentwicklung, was sie ideal für Anwendungen in der Industrie, Robotik und Konsumgütern macht.

Backstepping Control

Backstepping Control ist ein systematisches Verfahren zur Regelung nichtlinearer dynamischer Systeme, das auf der Idee basiert, ein komplexes System schrittweise in einfachere Teilsysteme zu zerlegen. Durch die schrittweise Entwicklung der Regelung wird eine hierarchische Struktur geschaffen, die es ermöglicht, die Stabilität und das Verhalten des gesamten Systems zu analysieren. Der Prozess beginnt mit der Definition eines stabilen Zielzustands und führt dann durch iterative Rückwärtsschritte zu den Eingangsgrößen des Systems.

Ein zentrales Konzept ist die Lyapunov-Stabilität, die sicherstellt, dass das gesamte System stabil bleibt, während die Teilsysteme nacheinander behandelt werden. Mathematisch wird oft eine Lyapunov-Funktion verwendet, um die Stabilität jeder Ebene zu zeigen. Diese Methode ist besonders nützlich in der Robotik, der Luft- und Raumfahrt sowie in anderen Bereichen, in denen komplexe nichtlineare Systeme gesteuert werden müssen.

Rankine-Wirkungsgrad

Die Rankine-Effizienz ist ein Maß für die Leistung eines Rankine-Zyklus, der häufig in Dampfkraftwerken zur Energieerzeugung verwendet wird. Sie definiert das Verhältnis der tatsächlich erzeugten Arbeit zur maximal möglichen Arbeit, die aus dem thermodynamischen Prozess gewonnen werden kann. Mathematisch wird die Rankine-Effizienz (η\etaη) durch die Formel

η=WnettoQin\eta = \frac{W_{netto}}{Q_{in}}η=Qin​Wnetto​​

bestimmt, wobei WnettoW_{netto}Wnetto​ die netto erzeugte Arbeit und QinQ_{in}Qin​ die zugeführte Wärme ist. Ein höherer Wert der Rankine-Effizienz bedeutet, dass der Zyklus effektiver arbeitet, was zu einer besseren Umwandlung von Wärme in mechanische Energie führt. Faktoren wie die Temperaturdifferenz zwischen dem heißen und dem kalten Reservoir sowie die Qualität des verwendeten Arbeitsmediums können die Effizienz erheblich beeinflussen.

Planck-Skalen-Physik

Die Planck-Skala bezieht sich auf die kleinsten Maßstäbe im Universum, die durch die Planck-Einheiten definiert sind. Diese Einheiten sind eine Kombination aus fundamentalen physikalischen Konstanten und umfassen die Planck-Länge (lPl_PlP​), die Planck-Zeit (tPt_PtP​) und die Planck-Masse (mPm_PmP​). Beispielsweise beträgt die Planck-Länge etwa 1.6×10−351.6 \times 10^{-35}1.6×10−35 Meter und die Planck-Zeit etwa 5.4×10−445.4 \times 10^{-44}5.4×10−44 Sekunden.

Auf dieser Skala wird die klassische Physik, wie sie in der Relativitätstheorie und der Quantenmechanik beschrieben wird, unzureichend, da die Effekte der Gravitation und der Quantenmechanik gleich wichtig werden. Dies führt zu spekulativen Theorien, wie etwa der Stringtheorie oder der Schleifenquantengravitation, die versuchen, ein einheitliches Bild der physikalischen Gesetze auf der Planck-Skala zu schaffen. Das Verständnis der Planck-Skala könnte entscheidend sein für die Entwicklung einer umfassenden Theorie von allem, die die vier Grundkräfte der Natur vereint: Gravitation, Elektromagnetismus, starke und schwache Kernkraft.