StudierendeLehrende

Dantzig’S Simplex Algorithm

Der Simplex-Algorithmus, entwickelt von George Dantzig in den 1940er Jahren, ist ein leistungsfähiges Verfahren zur Lösung von linearen Optimierungsproblemen. Das Ziel des Algorithmus besteht darin, eine optimale Lösung für ein gegebenes Problem zu finden, das durch lineare Gleichungen und Ungleichungen definiert ist. Der Algorithmus arbeitet durch den iterativen Wechsel zwischen verschiedenen Eckpunkten des zulässigen Bereichs, wobei er schrittweise die Zielfunktion verbessert, bis die optimale Lösung erreicht ist.

Der Verfahren beginnt mit einer Basislösung und sucht dann in jedem Schritt nach einer Verbesserung, indem es die Variablen wechselt, um die Zielfunktion zu maximieren oder zu minimieren. Die mathematische Formulierung des Problems kann in der Form der Standardform dargestellt werden, in der die Zielsetzung als
z=cTxz = c^T xz=cTx
formuliert wird, wobei ccc die Koeffizienten der Zielfunktion und xxx die Entscheidungsvariablen sind. Der Algorithmus garantiert, dass, wenn eine optimale Lösung existiert, er diese in endlicher Zeit finden wird.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Rückwärtsinduktion

Backward Induction ist eine Methode zur Lösung von Entscheidungsproblemen in der Spieltheorie, insbesondere in dynamischen Spielen mit vollständiger Information. Der Ansatz besteht darin, die Entscheidungen der Spieler von der letzten Runde des Spiels bis zur ersten rückwärts zu analysieren. Dabei wird angenommen, dass die Spieler in jeder Runde rational handeln und ihre Entscheidungen auf der Grundlage der erwarteten Entscheidungen der anderen Spieler treffen.

Um dies zu verdeutlichen, betrachten wir ein einfaches Beispiel mit zwei Spielern, die abwechselnd Entscheidungen treffen. Der Spieler, der zuletzt an der Reihe ist, wählt zuerst die optimale Strategie, und diese Entscheidung beeinflusst die Strategie des vorhergehenden Spielers. Durch das systematische Durcharbeiten der möglichen Ergebnisse und Strategien von hinten nach vorne können die optimalen Strategien für alle Spieler identifiziert werden.

In mathematischen Formulierungen wird oft die Gleichung V(s)=max⁡a∈A(s)R(s,a)+V(s′)V(s) = \max_{a \in A(s)} R(s, a) + V(s')V(s)=maxa∈A(s)​R(s,a)+V(s′) verwendet, wobei V(s)V(s)V(s) den Wert des Spiels in Zustand sss darstellt, A(s)A(s)A(s) die möglichen Aktionen in diesem Zustand und R(s,a)R(s, a)R(s,a) die Belohnung für die gewählte Aktion aaa darstellt.

Nyquist-Diagramm

Ein Nyquist Plot ist ein grafisches Werkzeug, das in der Regelungstechnik und Signalverarbeitung verwendet wird, um die Stabilität und das Frequenzverhalten von dynamischen Systemen zu analysieren. Der Plot stellt die komplexe Frequenzantwort eines Systems dar, indem die Realteile gegen die Imaginärteile der Übertragungsfunktion H(jω)H(j\omega)H(jω) aufgetragen werden, wobei ω\omegaω die Frequenz ist. Dies ermöglicht es, die Stabilität eines Systems zu beurteilen, indem man die Umrundungen des Punktes (−1,0)(-1, 0)(−1,0) im Diagramm betrachtet.

Wichtige Aspekte des Nyquist Plots sind:

  • Stabilität: Ein System ist stabil, wenn der Nyquist Plot nicht den Punkt (−1,0)(-1, 0)(−1,0) umschließt.
  • Kreisbewegung: Der Verlauf des Plots zeigt, wie das System auf verschiedene Frequenzen reagiert, was Rückschlüsse auf Resonanz und Dämpfung zulässt.

Insgesamt ist der Nyquist Plot ein wertvolles Werkzeug zur Analyse und zum Entwurf von Regelungssystemen.

Laplace-Transformation

Die Laplace-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Ingenieurwissenschaft und Mathematik verwendet wird, um Differentialgleichungen zu lösen und Systeme zu analysieren. Sie wandelt eine Funktion f(t)f(t)f(t), die von der Zeit ttt abhängt, in eine Funktion F(s)F(s)F(s), die von einer komplexen Frequenz sss abhängt, um. Die allgemeine Form der Laplace-Transformation ist gegeben durch die Gleichung:

F(s)=∫0∞e−stf(t) dtF(s) = \int_0^{\infty} e^{-st} f(t) \, dtF(s)=∫0∞​e−stf(t)dt

Hierbei ist e−ste^{-st}e−st der Dämpfungsfaktor, der hilft, das Verhalten der Funktion im Zeitbereich zu steuern. Die Transformation ist besonders nützlich, da sie die Lösung von Differentialgleichungen in algebraische Gleichungen umwandelt, was die Berechnungen erheblich vereinfacht. Die Rücktransformation, die als Inverse Laplace-Transformation bekannt ist, ermöglicht es, die ursprüngliche Funktion f(t)f(t)f(t) aus F(s)F(s)F(s) zurückzugewinnen.

Karp-Rabin-Algorithmus

Der Karp-Rabin Algorithmus ist ein effizienter Suchalgorithmus zur Mustererkennung in Texten, der auf der Verwendung von Hash-Funktionen basiert. Er ermöglicht es, ein Muster in einem Text mit einer durchschnittlichen Zeitkomplexität von O(n)O(n)O(n), wobei nnn die Länge des Textes ist, zu finden. Der Algorithmus berechnet einen Hash-Wert für das Muster und für die substrings des Textes mit der gleichen Länge wie das Muster. Wenn die Hash-Werte übereinstimmen, wird eine genauere Überprüfung des Musters durchgeführt, um sicherzustellen, dass es sich tatsächlich um einen Treffer handelt.

Die Hash-Funktion wird typischerweise als polynomialer Hash definiert:

H(S)=(s0⋅bm−1+s1⋅bm−2+…+sm−1⋅b0)mod  pH(S) = (s_0 \cdot b^{m-1} + s_1 \cdot b^{m-2} + \ldots + s_{m-1} \cdot b^0) \mod pH(S)=(s0​⋅bm−1+s1​⋅bm−2+…+sm−1​⋅b0)modp

wobei SSS die Zeichen des Musters, mmm die Länge des Musters, bbb eine Basis und ppp eine Primzahl ist. Ein Vorteil des Karp-Rabin Algorithmus ist die Möglichkeit, den Hash-Wert effizient von einem substring zum nächsten zu aktualisieren, was die Berechnungen beschleunigt.

Koopman-Operator

Der Koopman Operator ist ein mathematisches Konzept, das in der dynamischen Systemtheorie verwendet wird, um das Verhalten nichtlinearer Systeme zu analysieren. Er betrachtet die Entwicklung von Funktionen, die auf den Zustandsräumen eines dynamischen Systems definiert sind, und erlaubt es, die Dynamik des Systems in einem höheren dimensionalen Raum zu untersuchen. Der Operator K\mathcal{K}K ist definiert als:

Kf(x)=f(ϕ(t,x))\mathcal{K} f(x) = f(\phi(t, x))Kf(x)=f(ϕ(t,x))

wobei fff eine messbare Funktion ist, xxx der Zustand des Systems und ϕ(t,x)\phi(t, x)ϕ(t,x) die Flussfunktion, die die Zeitentwicklung des Systems beschreibt. Im Gegensatz zu traditionellen Ansätzen, die oft auf den Zustand selbst fokussiert sind, ermöglicht der Koopman Operator die Untersuchung von observablen Größen und deren zeitlicher Entwicklung, was insbesondere in der modernen Datenanalyse und Maschinelles Lernen von Bedeutung ist. Durch die Anwendung des Koopman Operators können Forscher auch lineare Techniken verwenden, um nichtlineare Systeme zu analysieren, was neue Perspektiven und Werkzeuge für die Systemanalyse eröffnet.

Arrow's Theorem

Arrow’s Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, ist ein zentrales Ergebnis in der Sozialwahltheorie, das die Schwierigkeiten bei der Aggregation individueller Präferenzen zu einer kollektiven Entscheidung aufzeigt. Das Theorem besagt, dass es unter bestimmten Bedingungen unmöglich ist, ein Wahlverfahren zu finden, das die folgenden rationalen Kriterien erfüllt:

  1. Vollständigkeit: Für jede mögliche Auswahl von Alternativen sollte es möglich sein, eine Rangordnung zu erstellen.
  2. Transitivität: Wenn eine Gruppe von Wählern Alternative A über B und B über C bevorzugt, sollte A auch über C bevorzugt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Rangordnung zwischen zwei Alternativen sollte nicht von der Einschätzung einer dritten, irrelevanten Alternative abhängen.
  4. Bedingung der Einigkeit: Wenn alle Wähler eine bestimmte Alternative bevorzugen, sollte diese Alternative auch in der kollektiven Entscheidung bevorzugt werden.

Arrow zeigte, dass kein Wahlsystem existiert, das diese Bedingungen gleichzeitig erfüllt, falls es mindestens drei Alternativen gibt. Dies hat weitreichende Implikationen für die Demokratie und die Gestaltung von Abstimmungssystemen, da es die Schwierigkeiten bei der Schaffung eines fairen und konsistenten Entscheidungsprozesses verdeutlicht.