StudierendeLehrende

Schelling Segregation Model

Das Schelling Segregation Model ist ein agentenbasiertes Modell, das von dem Ökonom Thomas Schelling in den 1970er Jahren entwickelt wurde, um die Dynamik der Segregation in sozialen Gruppen zu untersuchen. Es zeigt, wie Individuen, die eine Präferenz für Nachbarn ähnlicher Gruppen haben, zu einer räumlichen Segregation führen können, auch wenn ihre Präferenzen nicht extrem stark sind. Das Modell besteht aus einem Gitter, auf dem verschiedene Agenten platziert sind, die unterschiedliche Eigenschaften (z.B. Ethnizität oder soziale Klasse) repräsentieren.

Die Agenten sind unzufrieden, wenn ein bestimmter Prozentsatz ihrer Nachbarn nicht die gleiche Eigenschaft hat und bewegen sich entsprechend, um ihre Situation zu verbessern. Dies führt oft zu einem selbstverstärkenden Prozess, bei dem selbst kleine Präferenzen für Homogenität zu einer erheblichen Segregation führen können. Die Ergebnisse des Modells verdeutlichen, dass Segregation nicht unbedingt das Ergebnis von Diskriminierung oder Vorurteilen ist, sondern auch aus individuellen Entscheidungen und Präferenzen resultieren kann.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Gravitationswellenmessung

Die Detektion von Gravitationswellen ist ein bedeutender Fortschritt in der modernen Physik und Astronomie. Gravitationswellen sind winzige Verzerrungen in der Raum-Zeit, die durch beschleunigte Massen, wie beispielsweise bei der Kollision von Schwarzen Löchern oder Neutronensternen, erzeugt werden. Um diese Wellen nachzuweisen, verwenden Wissenschaftler spezialisierte Instrumente wie den Laser Interferometer Gravitational-Wave Observatory (LIGO) und Virgo. Diese Instrumente messen die Veränderungen in Abständen von bis zu einem Bruchteil der Breite eines Protons, indem sie Laserstrahlen über lange Strecken senden und die Interferenzmuster analysieren, die durch die Wellen erzeugt werden. Der Nachweis von Gravitationswellen eröffnet neue Möglichkeiten zur Erforschung des Universums, da er Informationen über extreme astrophysikalische Ereignisse liefert, die mit herkömmlichen Teleskopen nicht beobachtet werden können.

Dirac-Delta

Die Dirac-Delta-Funktion, oft einfach als Delta-Funktion bezeichnet, ist ein mathematisches Konzept, das in der Physik und Ingenieurwissenschaft häufig verwendet wird. Sie wird definiert als eine Funktion δ(x)\delta(x)δ(x), die an einem Punkt x=0x = 0x=0 unendlich hoch ist und außerhalb dieses Punktes den Wert 0 annimmt. Formal wird sie so beschrieben:

δ(x)={∞fu¨r x=00fu¨r x≠0\delta(x) = \begin{cases} \infty & \text{für } x = 0 \\ 0 & \text{für } x \neq 0 \end{cases}δ(x)={∞0​fu¨r x=0fu¨r x=0​

Ein zentrales Merkmal der Dirac-Delta-Funktion ist, dass das Integral über die gesamte Funktion gleich 1 ist:

∫−∞∞δ(x) dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1∫−∞∞​δ(x)dx=1

Die Delta-Funktion wird häufig verwendet, um ideale Punktquellen oder -impulse zu modellieren, da sie es ermöglicht, physikalische Phänomene wie elektrische Ladungen oder mechanische Kräfte, die an einem bestimmten Punkt wirken, präzise zu beschreiben. In der Theorie der Fourier-Transformation spielt die Dirac-Delta-Funktion eine entscheidende Rolle, da sie als "Sonde" für die Frequenzanalyse fungiert.

Wurzelortskurve-Analyse

Die Root Locus Analyse ist eine grafische Methode zur Untersuchung der Stabilität und Dynamik von Regelungssystemen. Sie zeigt, wie sich die Pole eines geschlossenen Regelkreises ändern, wenn ein Parameter, oft die Verstärkung des Systems, variiert wird. Die Wurzeln des charakteristischen Polynoms, das die Systemdynamik beschreibt, werden auf dem komplexen Zahlenfeld dargestellt.

Die grundlegenden Schritte der Root Locus Analyse sind:

  1. Bestimmung der offenen Regelkreisübertragungsfunktion G(s)H(s)G(s)H(s)G(s)H(s).
  2. Identifizierung der Pole und Nullstellen dieser Funktion.
  3. Zeichnen des Wurzelorts, indem man die Bewegung der Pole im s-Bereich verfolgt, während die Verstärkung KKK von 0 bis unendlich variiert wird.

Diese Methode ist besonders nützlich, um herauszufinden, unter welchen Bedingungen das System stabil oder instabil wird, und um geeignete Parameter für Regelungsdesigns zu wählen.

Gini-Unreinheit

Die Gini Impurity ist ein Maß für die Unreinheit oder Unordnung eines Datensatzes, das häufig in Entscheidungsbaum-Algorithmen verwendet wird, um die Qualität von Splits zu bewerten. Sie quantifiziert die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Element aus dem Datensatz einer falschen Klasse zugeordnet wird, wenn das Element zufällig ausgewählt und die Klasse zufällig vorhergesagt wird. Der Wert der Gini Impurity liegt zwischen 0 und 1, wobei 0 vollständige Reinheit (alle Elemente gehören zur gleichen Klasse) und 1 maximale Unreinheit (alle Klassen sind gleichmäßig verteilt) darstellt.

Mathematisch wird die Gini Impurity für einen Datensatz DDD definiert als:

Gini(D)=1−∑i=1npi2Gini(D) = 1 - \sum_{i=1}^{n} p_i^2Gini(D)=1−i=1∑n​pi2​

Hierbei ist pip_ipi​ der Anteil der Elemente, die zur Klasse iii gehören, und nnn die Anzahl der Klassen im Datensatz. Ein niedriger Gini-Wert deutet darauf hin, dass der Datensatz homogen ist, während ein hoher Wert auf eine größere Vielfalt der Klassen hinweist. Die Minimierung der Gini Impurity während des Trainingsprozesses von Entscheidungsbäumen hilft, die Trennschärfe der Klassifizierung zu maximieren.

Abwärtswandler

Ein Buck Converter ist ein elektronisches Schaltungselement, das zur Spannungswandlung dient, indem es eine höhere Eingangsspannung in eine niedrigere Ausgangsspannung umwandelt. Diese Schaltung gehört zur Familie der Schaltregler und arbeitet im Wesentlichen durch schnelles Ein- und Ausschalten eines Transistors, der als Schalter fungiert. Die Energie wird in einer Induktivität gespeichert, während der Schalter geschlossen ist, und dann an die Last abgegeben, wenn der Schalter geöffnet ist.

Die Effizienz eines Buck Converters ist in der Regel sehr hoch, oft über 90%, da die Verlustleistung minimiert wird. Die Ausgangsspannung VoutV_{out}Vout​ kann durch das Verhältnis der Schaltfrequenz und der Induktivität sowie der Last bestimmt werden, wobei die grundlegende Beziehung durch die Gleichung gegeben ist:

Vout=D⋅VinV_{out} = D \cdot V_{in}Vout​=D⋅Vin​

Hierbei ist DDD das Tastverhältnis, das angibt, wie lange der Schalter im Vergleich zur gesamten Schaltperiode geschlossen ist. Buck Converter finden breite Anwendung in der Stromversorgung von elektronischen Geräten, da sie eine effiziente und kompakte Lösung zur Spannungsregelung bieten.

Gini-Koeffizient

Der Gini-Koeffizient ist ein Maß für die Einkommens- oder Vermögensverteilung innerhalb einer Bevölkerung und wird häufig verwendet, um die Ungleichheit in einer Gesellschaft zu quantifizieren. Er variiert zwischen 0 und 1, wobei 0 vollständige Gleichheit darstellt (alle haben das gleiche Einkommen) und 1 vollständige Ungleichheit (eine Person hat das gesamte Einkommen, während alle anderen nichts haben). Mathematisch wird der Gini-Koeffizient aus der Lorenz-Kurve abgeleitet, die die kumulierte Einkommensverteilung darstellt. Der Gini-Koeffizient kann auch als Verhältnis der Fläche zwischen der Lorenz-Kurve und der Gleichheitslinie zur gesamten Fläche unter der Gleichheitslinie dargestellt werden:

G=AA+BG = \frac{A}{A + B}G=A+BA​

Hierbei ist AAA die Fläche zwischen der Gleichheitslinie und der Lorenz-Kurve, während BBB die Fläche unter der Lorenz-Kurve darstellt. Ein niedriger Gini-Koeffizient deutet auf eine gerechtere Einkommensverteilung hin, während ein hoher Koeffizient auf eine größere Ungleichheit hinweist.