StudierendeLehrende

Game Theory Equilibrium

In der Spieltheorie bezeichnet das Konzept des Gleichgewichts einen Zustand, in dem die Strategien aller Spieler optimal aufeinander abgestimmt sind, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. Das bekannteste Gleichgewicht ist das Nash-Gleichgewicht, benannt nach John Nash, das auftritt, wenn jeder Spieler die beste Antwort auf die Strategien der anderen wählt. In einem solchen Gleichgewicht sind die Entscheidungen der Spieler stabil, und es gibt keine Möglichkeit, durch eine Änderung der Strategie einen höheren Nutzen zu erzielen. Mathematisch wird ein Nash-Gleichgewicht oft als ein Paar von Strategien (s1∗,s2∗)(s_1^*, s_2^*)(s1∗​,s2∗​) dargestellt, bei dem für jeden Spieler iii gilt:

ui(s1∗,s2∗)≥ui(s1,s2∗)u_i(s_1^*, s_2^*) \geq u_i(s_1, s_2^*)ui​(s1∗​,s2∗​)≥ui​(s1​,s2∗​)

für alle möglichen Strategien s1s_1s1​ und s2s_2s2​ der anderen Spieler. Spieltheoretisches Gleichgewicht ist von zentraler Bedeutung in der Wirtschaft, da es hilft, das Verhalten von Individuen und Firmen in strategischen Interaktionen zu verstehen und vorherzusagen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Nyquist-Kriterium

Das Nyquist-Kriterium ist ein fundamentales Konzept in der Signalverarbeitung und Regelungstechnik, das beschreibt, unter welchen Bedingungen ein System stabil ist. Es basiert auf der Analyse der Übertragungsfunktionen von Systemen im Frequenzbereich. Das Kriterium besagt, dass ein geschlossenes System stabil ist, wenn die Anzahl der Umkreisungen, die der Nyquist-Plot der offenen Übertragungsfunktion um den Punkt −1-1−1 im komplexen Frequenzbereich macht, gleich der Anzahl der Pole der offenen Übertragungsfunktion im rechten Halbraum ist.

Um das Nyquist-Kriterium anzuwenden, wird der Nyquist-Plot erstellt, der die Frequenzantwort des Systems darstellt. Wichtige Punkte dabei sind:

  • Die Lage der Pole und Nullstellen des Systems.
  • Die Frequenzwerte, bei denen die Phase der Übertragungsfunktion −180∘-180^\circ−180∘ erreicht.
  • Die Anzahl der Umkreisungen um den kritischen Punkt −1-1−1.

Das Nyquist-Kriterium ist besonders nützlich, um die Stabilität eines Regelkreises zu analysieren und zu gewährleisten, dass das System auf Störungen angemessen reagiert.

Plasmonische Metamaterialien

Plasmonic Metamaterials sind künstlich geschaffene Materialien, die einzigartige optische Eigenschaften aufweisen, die in der Natur nicht vorkommen. Sie nutzen die Wechselwirkung zwischen Licht und den kollektiven Schwingungen der Elektronen an der Oberfläche von Metallen, bekannt als Plasmonen. Diese Materialien können Licht bei Wellenlängen steuern, die kleiner als die Struktur selbst sind, was zu Phänomenen wie Superlensing und Holo-Optik führt. Plasmonic Metamaterials finden Anwendung in verschiedenen Bereichen, darunter die Sensorik, die Photovoltaik und die Nanophotonik. Eine der bemerkenswertesten Eigenschaften ist die Fähigkeit, elektromagnetische Wellen zu fokussieren und zu manipulieren, was die Entwicklung neuartiger Technologien ermöglicht, die über die Grenzen der klassischen Optik hinausgehen.

Arbitrage-Preisgestaltung

Arbitrage Pricing Theory (APT) ist ein Finanzmodell, das die Beziehung zwischen dem Risiko eines Vermögenswerts und seiner erwarteten Rendite beschreibt. Es basiert auf der Annahme, dass es mehrere Faktoren gibt, die die Renditen beeinflussen, im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen Marktfaktor betrachtet. APT ermöglicht es Investoren, Arbitrage-Gelegenheiten zu identifizieren, bei denen sie von Preisdifferenzen zwischen verwandten Vermögenswerten profitieren können.

Die grundlegende Idee hinter APT ist, dass der Preis eines Vermögenswerts als Funktion der verschiedenen Risikofaktoren dargestellt werden kann:

E(Ri)=Rf+β1⋅(F1)+β2⋅(F2)+…+βn⋅(Fn)E(R_i) = R_f + \beta_1 \cdot (F_1) + \beta_2 \cdot (F_2) + \ldots + \beta_n \cdot (F_n)E(Ri​)=Rf​+β1​⋅(F1​)+β2​⋅(F2​)+…+βn​⋅(Fn​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts, RfR_fRf​ der risikofreie Zinssatz und βn\beta_nβn​ die Sensitivität des Vermögenswerts gegenüber dem nnn-ten Risikofaktor FnF_nFn​. Durch die Identifizierung und Analyse dieser Faktoren können Investoren potenzielle Risiken und Chancen besser verstehen und gezielt handeln.

Planck-Einstein-Beziehung

Die Planck-Einstein Relation beschreibt den Zusammenhang zwischen der Energie eines Photons und seiner Frequenz. Sie wird durch die Formel E=h⋅νE = h \cdot \nuE=h⋅ν ausgedrückt, wobei EEE die Energie des Photons, hhh die Plancksche Konstante (ungefähr 6,626×10−34 Js6,626 \times 10^{-34} \, \text{Js}6,626×10−34Js) und ν\nuν die Frequenz des Photons ist. Diese Beziehung zeigt, dass die Energie direkt proportional zur Frequenz ist: Je höher die Frequenz eines Lichtstrahls, desto größer ist seine Energie.

Zusätzlich kann die Frequenz durch die Wellenlänge λ\lambdaλ in Verbindung gebracht werden, da ν=cλ\nu = \frac{c}{\lambda}ν=λc​, wobei ccc die Lichtgeschwindigkeit ist. Somit lässt sich die Planck-Einstein Relation auch als E=h⋅cλE = \frac{h \cdot c}{\lambda}E=λh⋅c​ formulieren, was verdeutlicht, dass Photonen mit kürzeren Wellenlängen eine höhere Energie besitzen. Diese Relation ist grundlegend für das Verständnis der Quantenmechanik und hat weitreichende Anwendungen in der Physik und Technologie, insbesondere in der Photonik und der Quantenoptik.

DSGE-Modelle in der Geldpolitik

DSGE-Modelle (Dynamische Stochastische Allgemeine Gleichgewichtsmodelle) sind ein zentrales Instrument in der Geldpolitik, das Ökonomen hilft, die Auswirkungen von wirtschaftlichen Schocks und geldpolitischen Maßnahmen zu analysieren. Diese Modelle kombinieren mikroökonomische Grundannahmen über das Verhalten von Haushalten und Unternehmen mit makroökonomischen Aggregaten, um eine konsistente und dynamische Sicht auf die Wirtschaft zu bieten.

Die wichtigsten Merkmale von DSGE-Modellen sind:

  • Dynamik: Sie berücksichtigen, wie sich die Wirtschaft im Laufe der Zeit entwickelt, insbesondere unter dem Einfluss von Schocks.
  • Stochastizität: Sie integrieren zufällige Störungen, die die Wirtschaft beeinflussen können, wie technologische Innovationen oder Änderungen in der Geldpolitik.
  • Gleichgewicht: DSGE-Modelle streben ein allgemeines Gleichgewicht an, in dem Angebot und Nachfrage über alle Märkte hinweg übereinstimmen.

Ein Beispiel für die Anwendung von DSGE-Modellen in der Geldpolitik ist die Analyse der Reaktion der Wirtschaft auf eine Zinssatzänderung. Solche Modelle helfen Zentralbanken, die kurz- und langfristigen Auswirkungen ihrer Entscheidungen auf Inflation und Beschäftigung besser zu verstehen.

Hawking-Temperatur-Derivation

Die Hawking-Temperatur beschreibt die Temperatur von Schwarze Löcher, die durch die quantenmechanische Effekte an der Ereignishorizont-Oberfläche entstehen. Stephen Hawking zeigte, dass aufgrund von Quantenfluktuationen Paare von Teilchen und Antiteilchen in der Nähe des Ereignishorizonts entstehen können. Wenn eines dieser Teilchen ins schwarze Loch fällt und das andere entkommt, beobachtet ein äußerer Beobachter, dass das schwarze Loch Energie verliert, was zu einer positiven Temperatur führt. Die Hawking-Temperatur THT_HTH​ kann mathematisch durch die Formel gegeben werden:

TH=ℏc38πGMkBT_H = \frac{\hbar c^3}{8 \pi G M k_B}TH​=8πGMkB​ℏc3​

Hierbei sind ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit, GGG die Gravitationskonstante, MMM die Masse des schwarzen Lochs und kBk_BkB​ die Boltzmann-Konstante. Diese Temperatur zeigt, dass kleinere schwarze Löcher heißer sind und schneller verdampfen als größere, was interessante Implikationen für die Thermodynamik von schwarzen Löchern hat.