Das Stackelberg-Gleichgewicht ist ein Konzept aus der Spieltheorie und beschreibt eine spezielle Form des oligopolistischen Wettbewerbs, in dem es einen Marktführer (Leader) und einen oder mehrere Nachfolger (Follower) gibt. Der Marktführer entscheidet zuerst über die Produktionsmenge, während die Nachfolger ihre Entscheidungen basierend auf der Beobachtung der Entscheidung des Leaders treffen. Dadurch entsteht eine strategische Interaktion zwischen den Akteuren, die zu einem Gleichgewicht führt, bei dem der Leader seine Vorteile maximiert, indem er die Reaktionen der Follower antizipiert.
Mathematisch wird das Gleichgewicht oft durch die Reaktionsfunktionen der Unternehmen beschrieben, wobei der Leader die optimale Menge und die Follower die Menge wählen, um ihren Gewinn zu maximieren. Das resultierende Gleichgewicht kann durch die Gleichung
dargestellt werden, wobei den Gewinn darstellt, den Preis, die Gesamtproduktion und die Kostenfunktion ist. In einem Stackelberg-Gleichgewicht sind die Entscheidungen des Leaders entscheidend für den Markterfolg und das Verhalten der Follower.
Das Prisoner Dilemma ist ein klassisches Beispiel aus der Spieltheorie, das zeigt, wie zwei rational handelnde Individuen in einer Konfliktsituation zu suboptimalen Ergebnissen gelangen können. Stellen Sie sich vor, zwei Verbrecher werden festgenommen und für ein Verbrechen verhört. Jeder hat die Möglichkeit, die Aussage gegen den anderen zu machen oder zu schweigen. Wenn beide schweigen, erhalten sie eine mildere Strafe. Wenn einer aussagt und der andere schweigt, wird der Verräter freigelassen, während der Schweigende die volle Strafe erhält. Wenn beide aussagen, bekommen sie beide eine schwerere Strafe. Die dominante Strategie für beide ist, auszusagen, obwohl die beste gemeinsame Entscheidung darin bestünde, zu schweigen. Dieses Dilemma verdeutlicht, wie individuelle Rationalität zu einem kollektiven Nachteil führen kann und hat weitreichende Implikationen in Bereichen wie Wirtschaft, Politik und Sozialwissenschaften.
Das Lebesgue-Maß ist ein Konzept aus der Maßtheorie, das eine Erweiterung der intuitiven Idee von Länge, Fläche und Volumen auf allgemeinere Mengen im Raum darstellt. Es wurde von dem Mathematiker Henri Léon Lebesgue entwickelt und ermöglicht die Messung von nicht-messbaren Mengen, die mit herkömmlichen Methoden nicht erfasst werden können. Das Lebesgue-Maß ist besonders wichtig in der Analysis und der Wahrscheinlichkeitstheorie, da es die Grundlage für die Definition von Lebesgue-Integralen bildet.
Das Maß einer Menge wird durch die kleinste Summe der Volumina von offenen Kugeln verwendet, die abdecken. Das Lebesgue-Maß kann für verschiedene Dimensionen definiert werden, beispielsweise ist das Lebesgue-Maß einer beschränkten, offenen Menge im gleich der Fläche dieser Menge. Formal wird das Lebesgue-Maß oft mit bezeichnet und erfüllt Eigenschaften wie Translationalität und σ-Additivität.
Die Euler'sche Totient-Funktion, oft mit bezeichnet, ist eine mathematische Funktion, die die Anzahl der positiven ganzen Zahlen zählt, die zu einer gegebenen Zahl teilerfremd sind. Zwei Zahlen sind teilerfremd, wenn ihr größter gemeinsamer Teiler (ggT) gleich 1 ist. Zum Beispiel ist , da die Zahlen 1, 2, 4, 5, 7 und 8 teilerfremd zu 9 sind.
Die Totient-Funktion kann auch für Primzahlen berechnet werden, wobei gilt:
Für eine Zahl , die in ihre Primfaktoren zerlegt werden kann als , wird die Totient-Funktion wie folgt berechnet:
Die Euler'sche Totient-Funktion hat bedeutende Anwendungen
Ein MEMS-Beschleunigungsmesser (Micro-Electro-Mechanical Systems) ist ein Miniaturgerät, das Beschleunigungskräfte misst, die auf einen Körper wirken. Das Design basiert auf der Integration von mechanischen und elektrischen Komponenten auf einem einzigen Chip, was eine hohe Präzision und Empfindlichkeit ermöglicht. Wesentliche Elemente eines MEMS-Beschleunigungsmessers sind:
Ein typisches Design erfordert die Berücksichtigung von Faktoren wie Dämpfung, Stabilität und Temperaturkompensation, um die Genauigkeit zu gewährleisten. Die mathematische Beschreibung der Bewegung kann durch die Gleichung erfolgen, wobei die auf die Masse wirkende Kraft, die Masse und die Beschleunigung ist. MEMS-Beschleunigungsmesser finden Anwendung in verschiedenen Bereichen, einschließlich der Automobilindustrie, Mobiltelefonen und tragbaren Geräten.
Der Gromov-Hausdorff-Abstand ist ein Konzept aus der Geometrie und der mathematischen Analyse, das die Ähnlichkeit zwischen metrischen Räumen quantifiziert. Er wird verwendet, um zu bestimmen, wie "nah" zwei metrische Räume zueinander sind, unabhängig von ihrer konkreten Einbettung im Raum. Der Abstand wird definiert als der minimale Abstand, den notwendig ist, um die beiden Räume in einen gemeinsamen metrischen Raum einzubetten, wobei die ursprünglichen Abstände erhalten bleiben.
Mathematisch wird der Gromov-Hausdorff-Abstand zwischen zwei kompakten metrischen Räumen und wie folgt definiert:
Hierbei ist und eine Einbettung von und in einen gemeinsamen Raum und der Hausdorff-Abstand zwischen den Bildmengen. Dieses Konzept ist besonders nützlich in der Differentialgeometrie und in der Theorie der verzerrten Räume, da es erlaubt, geometrische Strukturen zu vergleichen, ohne auf spezifische Koordinatensysteme angewiesen zu sein.
Eine Poincaré-Karte ist ein wichtiges Werkzeug in der dynamischen Systemtheorie und der nichtlinearen Dynamik. Sie wird verwendet, um das Verhalten von dynamischen Systemen zu analysieren, indem sie eine höhere Dimension in eine niedrigere Dimension projiziert. Dies geschieht, indem man die Trajektorie eines Systems in einem bestimmten Zustand beobachtet und die Punkte aufzeichnet, an denen die Trajektorie eine festgelegte Schnittfläche, oft als Poincaré-Schnitt bezeichnet, kreuzt.
Die Punkte, die auf der Karte dargestellt werden, liefern wertvolle Informationen über die Stabilität und Periodizität des Systems. Mathematisch wird die Poincaré-Karte oft durch die Abbildung beschrieben, wobei die Dimension des Systems ist. Eine Poincaré-Karte kann helfen, chaotisches Verhalten von regelmäßigen Mustern zu unterscheiden und ermöglicht es, die langfristige Dynamik eines Systems auf intuitive Weise zu visualisieren.