StudierendeLehrende

Bayes' Theorem

Das Bayes' Theorem ist ein fundamentales Konzept in der Wahrscheinlichkeitstheorie, das es ermöglicht, die Wahrscheinlichkeit eines Ereignisses auf Basis von vorherigem Wissen zu aktualisieren. Es basiert auf der Idee, dass unsere Einschätzungen über die Welt durch neue Informationen korrigiert werden können. Die Formel lautet:

P(A∣B)=P(B∣A)⋅P(A)P(B)P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)⋅P(A)​

Hierbei ist P(A∣B)P(A|B)P(A∣B) die bedingte Wahrscheinlichkeit, dass das Ereignis AAA eintritt, gegeben dass BBB bereits eingetreten ist. P(B∣A)P(B|A)P(B∣A) ist die Wahrscheinlichkeit, dass BBB eintritt, wenn AAA wahr ist, während P(A)P(A)P(A) und P(B)P(B)P(B) die a priori Wahrscheinlichkeiten der Ereignisse AAA und BBB darstellen. Das Theorem hat weitreichende Anwendungen in verschiedenen Bereichen, darunter Statistik, Maschinelles Lernen und Medizin, insbesondere bei der Diagnose von Krankheiten, wo es hilft, die Wahrscheinlichkeit einer Krankheit basierend auf Testergebnissen zu bewerten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Stackelberg Leader

Der Stackelberg Leader ist ein Konzept aus der Spieltheorie und der Wirtschaftswissenschaft, das eine bestimmte Rolle in einem duopolaren Markt beschreibt. In einem Stackelberg-Modell agiert der Leader zuerst und trifft Entscheidungen, wie z.B. die Menge der produzierten Güter oder den Preis. Der Nachfolger, auch Stackelberg Follower genannt, beobachtet die Entscheidungen des Leaders und reagiert darauf, was ihm ermöglicht, seine eigene Strategie optimal anzupassen. Diese Führungsstruktur führt oft zu einem Wettbewerbsvorteil für den Leader, da er die Marktbedingungen und die Reaktionen des Followers antizipieren kann.

Mathematisch kann das Gleichgewicht in einem Stackelberg-Modell durch die Maximierung der Gewinnfunktionen der beiden Unternehmen dargestellt werden, wobei der Leader zuerst wählt und der Follower seine Reaktion darauf anpasst:

max⁡LeaderπL=P(Q)⋅QL−C(QL)\max_{\text{Leader}} \pi_L = P(Q) \cdot Q_L - C(Q_L)Leadermax​πL​=P(Q)⋅QL​−C(QL​) max⁡FollowerπF=P(Q)⋅QF−C(QF)\max_{\text{Follower}} \pi_F = P(Q) \cdot Q_F - C(Q_F)Followermax​πF​=P(Q)⋅QF​−C(QF​)

Hierbei ist P(Q)P(Q)P(Q) der Preis, der von der Gesamtmenge QQQ abhängt, QLQ_LQL​ und QFQ_FQF​ sind die Produktionsmengen des Leaders und Followers, und CCC ist die Kostenfunktion.

PID-Regelung

PID Tuning bezieht sich auf den Prozess der Anpassung der Parameter eines PID-Reglers (Proportional, Integral, Derivative), um eine optimale Regelung eines Systems zu gewährleisten. Die drei Hauptkomponenten des PID-Reglers sind:

  • Proportional (P): Beeinflusst die Regelung basierend auf der aktuellen Abweichung vom Sollwert.
  • Integral (I): Berücksichtigt die Summe der vergangenen Abweichungen, um langfristige Fehler zu eliminieren.
  • Derivative (D): Reagiert auf die Geschwindigkeit der Fehleränderung, um Überschwingungen zu minimieren.

Ein effektives Tuning der PID-Parameter verbessert die Reaktionszeit und Stabilität des Systems. Typische Methoden zur Durchführung des Tuning sind die Ziegler-Nichols-Methode oder die schrittweise Anpassung, bei denen die Parameter schrittweise verändert werden, um die Systemantwort zu beobachten und zu optimieren.

Q-Switching Laser

Ein Q-Switching Laser ist ein Laser, der durch gezielte Steuerung der Qualität des Resonators hochenergetische Lichtimpulse erzeugt. Dabei wird der Q-Faktor (Qualitätsfaktor) des Lasers zeitweise stark reduziert, um eine große Menge an Energie im Resonator zu speichern. Sobald die erforderliche Energie erreicht ist, wird der Q-Faktor wieder erhöht, was zu einer plötzlichen und intensiven Freisetzung der gespeicherten Energie führt. Diese Impulse haben typischerweise eine sehr kurze Dauer, oft im Nanosekundenbereich, und können eine hohe Spitzenleistung erreichen. Anwendungen finden sich in Bereichen wie Materialbearbeitung, medizinische Behandlungen und Lidar-Technologie.

Die Funktionsweise lässt sich in zwei Hauptphasen unterteilen:

  1. Speicherphase: Der Laserstrahl wird durch das Q-Switching blockiert, sodass sich das Licht im Resonator aufstaut.
  2. Impulsphase: Der Block wird entfernt, und die gespeicherte Energie wird in einem kurzen, intensiven Impuls freigesetzt.

Diese Technologie ermöglicht es, präzise und kontrollierte Laserimpulse zu erzeugen, die in vielen industriellen und medizinischen Anwendungen von großem Nutzen sind.

Fama-French-Drei-Faktoren-Modell

Das Fama-French Three-Factor Model erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es zusätzlich zu den marktweiten Risiken zwei weitere Faktoren einführt, die die Renditen von Aktien beeinflussen. Diese Faktoren sind:

  1. Größenfaktor (SMB - Small Minus Big): Dieser Faktor misst die Renditedifferenz zwischen kleinen und großen Unternehmen. Historisch haben kleinere Unternehmen tendenziell höhere Renditen erzielt als größere Unternehmen.

  2. Wertfaktor (HML - High Minus Low): Dieser Faktor erfasst die Renditedifferenz zwischen Unternehmen mit hohen Buchwert-Marktwert-Verhältnissen (Wertaktien) und solchen mit niedrigen Buchwert-Marktwert-Verhältnissen (Wachstumsaktien). Auch hier zeigen historische Daten, dass Wertaktien oft bessere Renditen erzielen als Wachstumsaktien.

Die mathematische Darstellung des Modells lautet:

Ri−Rf=α+β(Rm−Rf)+s⋅SMB+h⋅HML+ϵR_i - R_f = \alpha + \beta (R_m - R_f) + s \cdot SMB + h \cdot HML + \epsilonRi​−Rf​=α+β(Rm​−Rf​)+s⋅SMB+h⋅HML+ϵ

Hierbei steht RiR_iRi​ für die Rendite des Wertpapiers, RfR_fRf​ für den risikofreien Zinssatz, RmR_mRm​ für die Marktrendite, und α\alphaα, β\betaβ, $

Molekulare Docking-Screening

Molecular Docking Virtual Screening ist eine computergestützte Methode, die in der Arzneimittelforschung verwendet wird, um die Wechselwirkungen zwischen einem Zielprotein und potenziellen Wirkstoffen zu untersuchen. Dabei wird ein Ligand (z. B. ein kleines Molekül) in die Bindungsstelle eines Proteins „gedockt“, um die energetische Stabilität der Wechselwirkung zu bewerten. Dies geschieht durch Simulationen, die verschiedene Konformationen des Liganden und dessen Bindung an das Protein analysieren.

Die Ergebnisse dieser Simulationen helfen Wissenschaftlern, die vielversprechendsten Verbindungen zu identifizieren, die weitergehend getestet werden sollten, wodurch die Effizienz des Wirkstoffentdeckungsprozesses erheblich gesteigert wird. Ein wichtiger Aspekt des Docking ist die Berechnung des Bindungsaffinitätswerts, der oft durch verschiedene energetische Modelle wie das Molekulare Mechanik oder Quantentheorie bestimmt wird. Insgesamt ermöglicht das Molecular Docking Virtual Screening eine zielgerichtete Suche nach neuen Therapeutika und trägt zur Optimierung bestehender Medikamente bei.

Effiziente Grenze

Die Efficient Frontier ist ein Konzept aus der modernen Portfoliotheorie, das von Harry Markowitz entwickelt wurde. Sie stellt die Menge von Portfolios dar, die für ein gegebenes Risiko den höchsten erwarteten Ertrag bieten oder umgekehrt für einen gegebenen Ertrag das geringste Risiko. Diese Portfolios sind effizient, weil sie optimal ausbalanciert sind und andere Portfolios, die nicht auf der Frontier liegen, in Bezug auf Rendite und Risiko unterlegen sind.

Mathematisch wird die Efficient Frontier häufig durch die Minimierung der Portfoliovarianz unter Beachtung einer bestimmten erwarteten Rendite dargestellt. Dabei wird die Varianz als Maß für das Risiko verwendet und die erwartete Rendite als Zielgröße. In einem zweidimensionalen Diagramm, in dem die x-Achse das Risiko (Standardabweichung) und die y-Achse die erwartete Rendite darstellt, erscheinen die effizienten Portfolios als eine gekrümmte Linie, die die besten Investitionsmöglichkeiten abbildet.