StudierendeLehrende

Overlapping Generations

Das Konzept der überlappenden Generationen (Overlapping Generations, OLG) ist ein wirtschaftswissenschaftliches Modell, das die Interaktionen zwischen verschiedenen Altersgruppen innerhalb einer Gesellschaft beschreibt. In diesem Modell leben Individuen nicht nur in einer einzigen Generation, sondern es gibt mehrere Generationen, die gleichzeitig existieren und wirtschaftliche Entscheidungen treffen. Diese Überlappung führt zu einem dynamischen Gleichgewicht, in dem jüngere Generationen von den Entscheidungen der älteren Generationen beeinflusst werden und umgekehrt.

Ein zentrales Merkmal des OLG-Modells ist die Annahme, dass Individuen ihr Einkommen über ihre Lebensspanne hinweg maximieren, was zu Entscheidungen über Sparen, Investitionen und Konsum führt. Mathematisch kann dies durch Gleichungen wie

U(ct,ct+1)=log⁡(ct)+βlog⁡(ct+1)U(c_t, c_{t+1}) = \log(c_t) + \beta \log(c_{t+1})U(ct​,ct+1​)=log(ct​)+βlog(ct+1​)

dargestellt werden, wobei ctc_tct​ und ct+1c_{t+1}ct+1​ den Konsum in zwei aufeinanderfolgenden Perioden repräsentieren und β\betaβ den Zeitpräferenzfaktor darstellt. Das OLG-Modell wird häufig verwendet, um Probleme wie Renten, Öffentliche Finanzen und die Nachhaltigkeit von Sozialversicherungssystemen zu analysieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Urysohn-Lemma

Das Urysohn Lemma ist ein fundamentales Ergebnis in der Topologie, das sich mit der Trennbarkeit von Punkten und abgeschlossenen Mengen in einem normalen topologischen Raum befasst. Es besagt, dass in einem normalen Raum XXX (d.h. einem Raum, in dem jede abgeschlossene Menge von einer offenen Menge umgeben ist), für zwei disjunkte abgeschlossene Mengen AAA und BBB, eine stetige Funktion f:X→[0,1]f: X \to [0, 1]f:X→[0,1] existiert, die die Mengen trennt. Das bedeutet, dass f(x)=0f(x) = 0f(x)=0 für alle x∈Ax \in Ax∈A und f(x)=1f(x) = 1f(x)=1 für alle x∈Bx \in Bx∈B. Diese Eigenschaft ist besonders nützlich in der Analysis und der funktionalen Analysis, da sie es ermöglicht, kontinuierliche Abbildungen zu konstruieren, die bestimmte topologische Eigenschaften wahren. Das Urysohn Lemma ist ein Schlüsselwerkzeug bei der Untersuchung von metrischen Räumen und deren Eigenschaften.

Verhandlung-Nash

Der Begriff Bargaining Nash bezieht sich auf das Konzept des Verhandelns in der Spieltheorie, das von John Nash entwickelt wurde. Es beschreibt die Bedingungen, unter denen zwei oder mehr Parteien einvernehmlich zu einer Lösung gelangen, die für alle Beteiligten vorteilhaft ist. In diesem Kontext wird oft das sogenannte Nash-Gleichgewicht verwendet, das eine Situation beschreibt, in der kein Spieler einen Anreiz hat, seine Strategie einseitig zu ändern, da dies zu einem schlechteren Ergebnis führen würde.

Ein zentrales Element ist die Effizienz, die sicherstellt, dass keine weiteren Gewinne mehr erzielt werden können, ohne dass jemand anders schlechter gestellt wird. Die Verhandlungsposition der Parteien wird dabei durch ihre Ausscheidungspunkte bestimmt, also die Ergebnisse, die sie im Falle eines Scheiterns der Verhandlungen erzielen könnten. Das Nash-Verhandlungstheorem zeigt, dass unter bestimmten Bedingungen die Verhandlungslösungen stabil sind und dass die Parteien rational handeln, um ihre Nutzenmaximierung zu erreichen.

Heap-Allokation

Heap Allocation ist ein Verfahren zur dynamischen Zuweisung von Speicher in einem Computerprogramm. Im Gegensatz zur statischen Zuweisung, bei der die Größe des Speichers zur Compile-Zeit festgelegt wird, ermöglicht die Heap Allocation, dass Programme während ihrer Laufzeit Speicher anfordern und freigeben. Dies geschieht in der Regel durch Funktionen wie malloc oder new in C und C++. Der Speicher wird im sogenannten Heap verwaltet, einem speziellen Bereich des Arbeitsspeichers, der für dynamische Speicheroperationen reserviert ist.

Vorteile der Heap Allocation sind die Flexibilität und die Möglichkeit, große Datenmengen zu verwalten, die zur Compile-Zeit unbekannt sind. Allerdings kann sie auch zu Fragmentierung führen und erfordert eine sorgfältige Verwaltung, um Speicherlecks zu vermeiden, wenn nicht mehr benötigter Speicher nicht wieder freigegeben wird.

Eulers pentagonales Zahlentheorem

Der Euler’s Pentagonal Number Theorem ist ein bemerkenswerter Satz in der Zahlentheorie, der eine Verbindung zwischen den pentagonalen Zahlen und der Theorie der Partitionszahlen herstellt. Eine pentagonale Zahl PkP_kPk​ ist definiert durch die Formel

Pk=k(3k−1)2P_k = \frac{k(3k - 1)}{2}Pk​=2k(3k−1)​

für k=1,2,3,…k = 1, 2, 3, \ldotsk=1,2,3,… und ihre negativen Indizes k=−1,−2,−3,…k = -1, -2, -3, \ldotsk=−1,−2,−3,…. Der Satz besagt, dass die unendliche Reihe der Partitionszahlen p(n)p(n)p(n), also die Anzahl der Möglichkeiten, eine positive ganze Zahl nnn als Summe von positiven ganzen Zahlen zu schreiben, durch die pentagonalen Zahlen dargestellt werden kann:

∑n=0∞p(n)xn=∏k=1∞11−xPk⋅11−xP−k\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^{P_k}} \cdot \frac{1}{1 - x^{P_{-k}}}n=0∑∞​p(n)xn=k=1∏∞​1−xPk​1​⋅1−xP−k​1​

Diese Beziehung zeigt, dass die Partitionszahlen sowohl positive als auch negative pentagonale Zahlen verwenden. Euler’s Theorem hat weitreichende Anwendungen in der Kombinatorik und der theoretischen Mathematik, da es tiefe Einblicke in die Struktur von Partitionszahlen

Molekulare Docking-Screening

Molecular Docking Virtual Screening ist eine computergestützte Methode, die in der Arzneimittelforschung verwendet wird, um die Wechselwirkungen zwischen einem Zielprotein und potenziellen Wirkstoffen zu untersuchen. Dabei wird ein Ligand (z. B. ein kleines Molekül) in die Bindungsstelle eines Proteins „gedockt“, um die energetische Stabilität der Wechselwirkung zu bewerten. Dies geschieht durch Simulationen, die verschiedene Konformationen des Liganden und dessen Bindung an das Protein analysieren.

Die Ergebnisse dieser Simulationen helfen Wissenschaftlern, die vielversprechendsten Verbindungen zu identifizieren, die weitergehend getestet werden sollten, wodurch die Effizienz des Wirkstoffentdeckungsprozesses erheblich gesteigert wird. Ein wichtiger Aspekt des Docking ist die Berechnung des Bindungsaffinitätswerts, der oft durch verschiedene energetische Modelle wie das Molekulare Mechanik oder Quantentheorie bestimmt wird. Insgesamt ermöglicht das Molecular Docking Virtual Screening eine zielgerichtete Suche nach neuen Therapeutika und trägt zur Optimierung bestehender Medikamente bei.

Festkörper-Lithium-Schwefel-Batterien

Solid-State Lithium-Sulfur Batterien sind eine vielversprechende Technologie für die Energiespeicherung, die sich durch eine hohe Energiedichte und Sicherheit auszeichnet. Im Gegensatz zu herkömmlichen Lithium-Ionen-Batterien verwenden diese Batterien einen festen Elektrolyten anstelle einer flüssigen Elektrolytlösung, was das Risiko von Leckagen und Bränden verringert. Die Energiedichte von Lithium-Sulfur Batterien kann theoretisch bis zu 500 Wh/kg erreichen, was sie potenziell leistungsfähiger macht als aktuelle Batterietypen.

Ein weiteres wichtiges Merkmal ist die Verwendung von Schwefel als Kathodenmaterial, das nicht nur kostengünstig, sondern auch umweltfreundlich ist. Allerdings stehen Forscher vor Herausforderungen wie der geringen elektrischen Leitfähigkeit von Schwefel und der Neigung zur Volumenänderung während des Lade- und Entladevorgangs, was die Lebensdauer der Batterie beeinträchtigen kann. Dank fortschrittlicher Materialien und Technologien wird jedoch intensiv an der Überwindung dieser Hürden gearbeitet, um die Markteinführung dieser innovativen Batterietechnologie zu beschleunigen.