StudierendeLehrende

Ferroelectric Thin Films

Ferroelectric Thin Films sind dünne Schichten von ferroelectricen Materialien, die eine spontane Polarisation aufweisen, die umkehrbar ist. Diese Materialien sind charakterisiert durch ihre Fähigkeit, die elektrische Polarisation in Abhängigkeit von einem externen elektrischen Feld zu ändern, was sie für Anwendungen in der Speichertechnologie, Sensorik und Aktuatorik besonders interessant macht. Die Herstellung dieser Filme erfolgt häufig durch Techniken wie Molekularstrahlepitaxie oder Sputtern, um eine präzise Kontrolle über die Schichtdicke und -qualität zu gewährleisten.

Die Eigenschaften von ferroelectricen Dünnschichten sind stark von ihrer Struktur und Morphologie abhängig. Beispielsweise kann die Kristallstruktur durch die Substratmaterialien und Wachstumsbedingungen beeinflusst werden, was zu unterschiedlichen elektrischen Eigenschaften führt. Zudem ermöglicht die Kombination von Ferroelectricität mit anderen Funktionalitäten, wie in Multifunktionalen Materialien, innovative Anwendungen in der Nanoelektronik und der Energieumwandlung.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Whole Genome Duplication Events

Whole Genome Duplication (WGD) bezeichnet einen biologischen Prozess, bei dem das gesamte Genom eines Organismus verdoppelt wird. Diese Ereignisse sind von großer Bedeutung in der Evolutionsbiologie, da sie zu einer erhöhten genetischen Variation führen und neue Funktionen ermöglichen können. Durch WGD können Organismen zusätzliche Gene erwerben, die sich im Laufe der Zeit durch Mutation und Natürliche Selektion in neue, spezialisierte Gene umwandeln. Es gibt verschiedene Arten von WGD, darunter die autopolyploide (Verdopplung innerhalb einer Art) und die allopolyploide (Verdopplung zwischen verschiedenen Arten) WGD. Diese Ereignisse haben zur Diversifizierung vieler Pflanzen- und Tierarten beigetragen und sind entscheidend für das Verständnis der evolutionären Mechanismen, die die Biodiversität auf unserem Planeten antreiben.

Theta-Funktion

Die Theta-Funktion ist eine wichtige Funktion in der Mathematik, insbesondere in der Theorie der elliptischen Funktionen und der Zahlentheorie. Sie wird häufig verwendet, um Lösungen für verschiedene Arten von Differentialgleichungen zu finden und spielt eine zentrale Rolle in der Theorie der Modulformen. Die allgemeine Form der Theta-Funktion wird oft als θ(x)\theta(x)θ(x) bezeichnet und ist definiert durch:

θ(z,τ)=∑n=−∞∞eπin2τ+2πinz\theta(z, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i n^2 \tau + 2 \pi i n z}θ(z,τ)=n=−∞∑∞​eπin2τ+2πinz

Hierbei ist zzz eine komplexe Variable und τ\tauτ eine komplexe Zahl mit positivem Imaginärteil. Die Theta-Funktion hat interessante Eigenschaften, wie die Periodizität und die Transformationseigenschaften unter der Modulgruppe, und ist eng mit der Zahlentheorie, Statistik und Quantenmechanik verbunden. Sie hat auch Anwendungen in der Kombinatorik, wo sie zur Zählung von Gitterpunkten und zur Untersuchung von Partitionen verwendet wird.

Quantitative Finanzrisikomodellierung

Quantitative Finance Risk Modeling bezieht sich auf die Anwendung mathematischer und statistischer Methoden zur Bewertung und Steuerung von finanziellen Risiken in Märkten und Institutionen. Ziel ist es, potenzielle Verluste zu quantifizieren und Strategien zu entwickeln, um diese Risiken zu minimieren. Zu den häufig verwendeten Modellen gehören Value-at-Risk (VaR), Stress-Testing und Monte-Carlo-Simulationen, die jeweils unterschiedliche Ansätze zur Risikomessung bieten.

Ein zentrales Konzept in der Risikoanalyse ist die Korrelation zwischen verschiedenen Finanzinstrumenten, die oft durch Matrizen wie die Kovarianzmatrix dargestellt werden kann. Mathematisch kann dies durch die Formel

Cov(X,Y)=E[(X−μX)(Y−μY)]Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]Cov(X,Y)=E[(X−μX​)(Y−μY​)]

ausgedrückt werden, wobei Cov(X,Y)Cov(X, Y)Cov(X,Y) die Kovarianz zwischen den Variablen XXX und YYY und EEE den Erwartungswert darstellt. Die präzise Modellierung von Risiken ermöglicht es Finanzinstituten, informierte Entscheidungen zu treffen und ihre Risikopositionen effektiv zu steuern.

Lempel-Ziv-Kompression

Die Lempel-Ziv-Kompression ist ein Verfahren zur Datenkompression, das auf den Arbeiten von Abraham Lempel und Jacob Ziv basiert. Sie nutzt die Tatsache, dass Daten oft wiederkehrende Muster aufweisen, um diese effizienter zu speichern. Das Verfahren funktioniert, indem es Datenströme in Wörter zerlegt und diese Wörter dann in einer Tabelle speichert. Wenn ein Wort wieder entdeckt wird, wird es durch einen Verweis auf die Tabelle ersetzt, was den Speicherbedarf reduziert. Die Lempel-Ziv-Kompression findet Anwendung in vielen modernen Formaten, wie zum Beispiel in ZIP-Dateien und GIF-Bildern, und ist besonders effektiv bei der Kompression von Text und Bilddaten, wo sich Muster wiederholen.

Zusammengefasst folgt das Lempel-Ziv-Verfahren diesen Schritten:

  1. Initialisierung einer Tabelle: Zu Beginn werden alle möglichen Zeichen in eine Tabelle eingefügt.
  2. Erkennung von Mustern: Das Verfahren sucht nach wiederkehrenden Sequenzen in den Daten.
  3. Ersetzung durch Referenzen: Gefundene Muster werden durch Referenzen auf die Tabelle ersetzt.
  4. Speicherung der Tabelle: Die Tabelle muss ebenfalls gespeichert oder übertragen werden, um die Daten wiederherzustellen.

Nyquist-Frequenz-Aliasing

Die Nyquist-Frequenz ist die Hälfte der Abtastfrequenz eines Signals und spielt eine entscheidende Rolle bei der digitalen Signalverarbeitung. Wenn ein analoges Signal mit einer Frequenz abgetastet wird, die unterhalb der Nyquist-Frequenz liegt, tritt ein Phänomen auf, das als Aliasing bezeichnet wird. Dies bedeutet, dass höhere Frequenzen fälschlicherweise als niedrigere Frequenzen interpretiert werden, was zu Verzerrungen und fehlerhaften Rekonstruktionen des ursprünglichen Signals führt. Mathematisch kann dies beschrieben werden durch die Bedingung:

fa<2fmf_a < 2f_mfa​<2fm​

wobei faf_afa​ die Abtastfrequenz und fmf_mfm​ die maximale Frequenz des Signals ist. Um Aliasing zu vermeiden, sollte die Abtastfrequenz immer mindestens doppelt so hoch sein wie die höchste Frequenz des zu erfassenden Signals. Das Verständnis und die Berücksichtigung der Nyquist-Frequenz sind daher unerlässlich für die korrekte Verarbeitung und Analyse digitaler Signale.

Mean-Variance-Portfoliotheorie

Die Mean-Variance Portfolio Optimization ist eine Methode zur Konstruktion eines optimalen Portfolios, das eine Balance zwischen Risiko und Rendite anstrebt. Entwickelt von Harry Markowitz in den 1950er Jahren, basiert sie auf der Annahme, dass Investoren ihre Entscheidungen auf der erwarteten Rendite und der Volatilität (Risiko) von Anlagen treffen. Der zentrale Gedanke ist, dass durch die Diversifikation von Anlagen das Gesamtrisiko eines Portfolios reduziert werden kann, ohne dass die erwartete Rendite sinkt.

Mathematisch wird das Portfolio durch die Gewichtungen der einzelnen Anlagen wiw_iwi​ optimiert, wobei die erwartete Rendite μp\mu_pμp​ und die Varianz σp2\sigma_p^2σp2​ des Portfolios wie folgt definiert sind:

μp=∑i=1nwiμi\mu_p = \sum_{i=1}^{n} w_i \mu_iμp​=i=1∑n​wi​μi​ σp2=∑i=1n∑j=1nwiwjσij\sigma_p^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}σp2​=i=1∑n​j=1∑n​wi​wj​σij​

Hierbei ist μi\mu_iμi​ die erwartete Rendite der einzelnen Anlagen und σij\sigma_{ij}σij​ die Kovarianz zwischen den Renditen der Anlagen. Das Ziel der Optimierung ist es, die Gewichtungen wiw_iwi​ so zu wählen, dass die erwartete Rendite maximiert und