StudierendeLehrende

Wavelet Transform

Die Wavelet-Transformation ist ein mathematisches Verfahren, das zur Analyse von Signalen und Daten verwendet wird. Sie ermöglicht es, ein Signal in verschiedene Frequenzkomponenten zu zerlegen, während gleichzeitig die zeitliche Lokalisierung beibehalten wird. Im Gegensatz zur klassischen Fourier-Transformation, die nur die Frequenzinformationen liefert, ermöglicht die Wavelet-Transformation eine mehrdimensionale Analyse, indem sie sowohl die Frequenz als auch die Zeit berücksichtigt.

Die Wavelet-Transformation verwendet sogenannte Wavelets, die kleine Wellenformen sind, die sich über die Zeit und Frequenz verändern lassen. Diese Wavelets werden auf das Signal angewendet, um die Koeffizienten zu berechnen, die die Stärke der Frequenzen zu verschiedenen Zeiten repräsentieren. Mathematisch kann die kontinuierliche Wavelet-Transformation eines Signals f(t)f(t)f(t) durch die Formel

W(a,b)=1a∫−∞∞f(t)ψ(t−ba)dtW(a, b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi\left(\frac{t-b}{a}\right) dtW(a,b)=a​1​∫−∞∞​f(t)ψ(at−b​)dt

beschrieben werden, wobei ψ\psiψ das gewählte Wavelet, aaa die Skala und bbb die Zeitverschiebung ist. Diese Transformation findet Anwendung in vielen Bereichen, wie z.B. in der Bildverarbeitung, der Signalverarbeitung und der Datenkompression

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Support Vector

Support Vectors sind die Datenpunkte, die in der Nähe der Entscheidungsgrenze (oder Trennlinie) eines Klassifizierungsmodells liegen, insbesondere in Support Vector Machines (SVM). Diese Punkte sind entscheidend, da sie die Position der Trennlinie beeinflussen und somit die Klassifikation der anderen Datenpunkte bestimmen. Wenn man sich die Trennlinie als eine hyperplane (Hyperfläche) in einem mehrdimensionalen Raum vorstellt, dann sind die Support Vectors diejenigen Datenpunkte, die den minimalen Abstand zu dieser hyperplane haben.

Mathematisch wird der Abstand ddd eines Punktes xxx zu einer hyperplane beschrieben durch die Gleichung:

d=∣wTx+b∣∥w∥d = \frac{|w^T x + b|}{\|w\|}d=∥w∥∣wTx+b∣​

Hierbei ist www der Gewichtungsvektor und bbb der Bias. Wenn die Support Vectors entfernt werden, kann sich die Trennlinie ändern, was zu einer schlechteren Klassifikation führt. Daher sind sie von entscheidender Bedeutung für die Robustheit und Genauigkeit des Modells.

Geschäftsmodellinnovation

Business Model Innovation bezeichnet den Prozess, durch den Unternehmen ihre bestehenden Geschäftsmodelle grundlegend überarbeiten oder neue entwickeln, um sich an veränderte Marktbedingungen, Kundenbedürfnisse oder technologische Fortschritte anzupassen. Diese Innovation kann verschiedene Dimensionen betreffen, wie z.B. die Wertschöpfung, die Wertvermittlung und die Wertrealisierung. Typische Ansätze sind die Einführung neuer Produkte oder Dienstleistungen, die Veränderung der Preisstrukturen oder die Entwicklung alternativer Vertriebskanäle.

Ein erfolgreiches Beispiel für Business Model Innovation ist das Übergang von physischen Medien zu Streaming-Diensten, was Unternehmen wie Netflix revolutioniert hat. Wichtig ist, dass Unternehmen nicht nur ihre Angebote überdenken, sondern auch ihre gesamten Wertschöpfungsketten und Kundenbeziehungen neu gestalten, um wettbewerbsfähig zu bleiben.

Bragg'sches Gesetz

Das Bragg-Gesetz beschreibt die Beziehung zwischen dem Einfallswinkel von Röntgenstrahlen auf eine kristalline Struktur und der Beugung dieser Strahlen. Es wird oft verwendet, um die Struktur von Kristallen zu analysieren. Das Gesetz lautet:

nλ=2dsin⁡(θ)n\lambda = 2d \sin(\theta)nλ=2dsin(θ)

Hierbei steht nnn für die Ordnung der Beugung, λ\lambdaλ für die Wellenlänge der einfallenden Strahlen, ddd für den Abstand zwischen den Kristallebenen und θ\thetaθ für den Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, interferieren die reflektierten Wellen konstruktiv und erzeugen ein intensives Beugungsmuster. Dieses Prinzip ist grundlegend in der Röntgenkristallografie, die es Wissenschaftlern ermöglicht, die atomare Struktur von Materialien zu bestimmen.

Fokker-Planck-Gleichungslösungen

Die Fokker-Planck-Gleichung ist eine fundamentale Gleichung in der statistischen Physik und beschreibt die zeitliche Entwicklung der Wahrscheinlichkeitsdichte einer zufälligen Variablen. Sie wird häufig in Bereichen wie der chemischen Kinetik, der Finanzmathematik und der Biophysik angewendet. Die allgemeine Form der Fokker-Planck-Gleichung ist:

∂P(x,t)∂t=−∂∂x[A(x)P(x,t)]+∂2∂x2[B(x)P(x,t)]\frac{\partial P(x,t)}{\partial t} = -\frac{\partial}{\partial x}[A(x) P(x,t)] + \frac{\partial^2}{\partial x^2}[B(x) P(x,t)]∂t∂P(x,t)​=−∂x∂​[A(x)P(x,t)]+∂x2∂2​[B(x)P(x,t)]

Hierbei ist P(x,t)P(x,t)P(x,t) die Wahrscheinlichkeitsdichte, A(x)A(x)A(x) die Driftterm und B(x)B(x)B(x) die Diffusionsterm. Lösungen der Fokker-Planck-Gleichung sind oft nicht trivial und hängen stark von den spezifischen Formen der Funktionen A(x)A(x)A(x) und B(x)B(x)B(x) ab. Eine häufige Methode zur Lösung ist die Verwendung von Fourier-Transformationen oder Laplace-Transformationen, die es ermöglichen, die Gleichung in den Frequenz- oder Zeitbereich zu transformieren, um analytische oder numerische Lösungen zu finden.

DSGE-Modelle in der Geldpolitik

DSGE-Modelle (Dynamische Stochastische Allgemeine Gleichgewichtsmodelle) sind ein zentrales Instrument in der Geldpolitik, das Ökonomen hilft, die Auswirkungen von wirtschaftlichen Schocks und geldpolitischen Maßnahmen zu analysieren. Diese Modelle kombinieren mikroökonomische Grundannahmen über das Verhalten von Haushalten und Unternehmen mit makroökonomischen Aggregaten, um eine konsistente und dynamische Sicht auf die Wirtschaft zu bieten.

Die wichtigsten Merkmale von DSGE-Modellen sind:

  • Dynamik: Sie berücksichtigen, wie sich die Wirtschaft im Laufe der Zeit entwickelt, insbesondere unter dem Einfluss von Schocks.
  • Stochastizität: Sie integrieren zufällige Störungen, die die Wirtschaft beeinflussen können, wie technologische Innovationen oder Änderungen in der Geldpolitik.
  • Gleichgewicht: DSGE-Modelle streben ein allgemeines Gleichgewicht an, in dem Angebot und Nachfrage über alle Märkte hinweg übereinstimmen.

Ein Beispiel für die Anwendung von DSGE-Modellen in der Geldpolitik ist die Analyse der Reaktion der Wirtschaft auf eine Zinssatzänderung. Solche Modelle helfen Zentralbanken, die kurz- und langfristigen Auswirkungen ihrer Entscheidungen auf Inflation und Beschäftigung besser zu verstehen.

Organ-On-A-Chip

Organ-On-A-Chip ist eine innovative Technologie, die miniaturisierte, funktionale Nachbildungen menschlicher Organe in Form von Mikrochips schafft. Diese Chips bestehen aus lebenden Zellen, die in einer 3D-Struktur angeordnet sind, um die physiologischen Bedingungen und das Verhalten eines echten Organs nachzuahmen. Durch den Einsatz von Mikrofabrikationstechniken können Forscher gezielt die Zellinteraktionen, den Blutfluss und die Mikroumgebung simulieren. Diese Technologie wird häufig in der Arzneimittelforschung und -entwicklung eingesetzt, da sie es ermöglicht, die Wirkung von Medikamenten auf Organe zu testen, ohne dass Tierversuche nötig sind. Ein weiterer Vorteil ist die Möglichkeit, individuelle Patientendaten zu integrieren, um personalisierte Therapieansätze zu entwickeln. Insgesamt bietet Organ-On-A-Chip einen vielversprechenden Ansatz für die Zukunft der biomedizinischen Forschung und die Verbesserung der Arzneimittelsicherheit.