Advection-diffusion numerical schemes are computational methods used to solve partial differential equations that describe the transport of substances due to advection (bulk movement) and diffusion (spreading due to concentration gradients). These equations are crucial in various fields, such as fluid dynamics, environmental science, and chemical engineering. The general form of the advection-diffusion equation can be expressed as:
where is the concentration of the substance, is the velocity field, and is the diffusion coefficient. Numerical schemes, such as Finite Difference, Finite Volume, and Finite Element Methods, are employed to discretize these equations in both time and space, allowing for the approximation of solutions over a computational grid. A key challenge in these schemes is to maintain stability and accuracy, particularly in the presence of sharp gradients, which can be addressed by techniques such as upwind differencing and higher-order methods.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.