StudentsEducators

Black-Scholes

The Black-Scholes model, developed by Fischer Black, Myron Scholes, and Robert Merton in the early 1970s, is a mathematical framework used to determine the theoretical price of European-style options. The model assumes that the stock price follows a Geometric Brownian Motion with constant volatility and that markets are efficient, meaning that prices reflect all available information. The core of the model is encapsulated in the Black-Scholes formula, which calculates the price of a call option CCC as:

C=S0N(d1)−Xe−rtN(d2)C = S_0 N(d_1) - X e^{-rt} N(d_2)C=S0​N(d1​)−Xe−rtN(d2​)

where:

  • S0S_0S0​ is the current stock price,
  • XXX is the strike price of the option,
  • rrr is the risk-free interest rate,
  • ttt is the time to expiration,
  • N(d)N(d)N(d) is the cumulative distribution function of the standard normal distribution, and
  • d1d_1d1​ and d2d_2d2​ are calculated using the following equations:
d1=ln⁡(S0/X)+(r+σ2/2)tσtd_1 = \frac{\ln(S_0 / X) + (r + \sigma^2 / 2)t}{\sigma \sqrt{t}}d1​=σt​ln(S0​/X)+(r+σ2/2)t​ d2=d1−σtd_2 = d_1 - \sigma \sqrt{t}d2​=d1​−σt​

In this context, σ\sigmaσ represents the volatility of the stock.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Neural Mass Modeling

Neural Mass Modeling (NMM) is a theoretical framework used to describe the collective behavior of large populations of neurons in the brain. It simplifies the complex dynamics of individual neurons into a set of differential equations that represent the average activity of a neural mass, allowing researchers to investigate the macroscopic properties of neural networks. Key features of NMM include the ability to model oscillatory behavior, synchronization phenomena, and the influence of external inputs on neural dynamics. The equations often take the form of coupled oscillators, where the state of the neural mass can be described using variables such as population firing rates and synaptic interactions. By using NMM, researchers can gain insights into various neurological phenomena, including epilepsy, sleep cycles, and the effects of pharmacological interventions on brain activity.

Protein Docking Algorithms

Protein docking algorithms are computational tools used to predict the preferred orientation of two biomolecular structures, typically a protein and a ligand, when they bind to form a stable complex. These algorithms aim to understand the interactions at the molecular level, which is crucial for drug design and understanding biological processes. The docking process generally involves two main steps: search and scoring.

  1. Search: This step explores the possible conformations and orientations of the ligand relative to the target protein. It can involve methods such as grid-based search, Monte Carlo simulations, or genetic algorithms.

  2. Scoring: In this phase, each conformation generated during the search is evaluated using scoring functions that estimate the binding affinity. These functions can be based on physical principles, such as van der Waals forces, electrostatic interactions, and solvation effects.

Overall, protein docking algorithms play a vital role in structural biology and medicinal chemistry by facilitating the understanding of molecular interactions, which can lead to the discovery of new therapeutic agents.

Dirac Equation

The Dirac Equation is a fundamental equation in quantum mechanics and quantum field theory, formulated by physicist Paul Dirac in 1928. It describes the behavior of fermions, which are particles with half-integer spin, such as electrons. The equation elegantly combines quantum mechanics and special relativity, providing a framework for understanding particles that exhibit both wave-like and particle-like properties. Mathematically, it is expressed as:

(iγμ∂μ−m)ψ=0(i \gamma^\mu \partial_\mu - m) \psi = 0(iγμ∂μ​−m)ψ=0

where γμ\gamma^\muγμ are the Dirac matrices, ∂μ\partial_\mu∂μ​ is the four-gradient operator, mmm is the mass of the particle, and ψ\psiψ is the wave function representing the particle's state. One of the most significant implications of the Dirac Equation is the prediction of antimatter; it implies the existence of particles with the same mass as electrons but opposite charge, leading to the discovery of positrons. The equation has profoundly influenced modern physics, paving the way for quantum electrodynamics and the Standard Model of particle physics.

Borel Sigma-Algebra

The Borel Sigma-Algebra is a foundational concept in measure theory and topology, primarily used in the context of real numbers. It is denoted as B(R)\mathcal{B}(\mathbb{R})B(R) and is generated by the open intervals in the real number line. This means it includes not only open intervals but also all possible combinations of these intervals, such as their complements, countable unions, and countable intersections. Hence, the Borel Sigma-Algebra contains various types of sets, including open sets, closed sets, and more complex sets derived from them.

In formal terms, it can be defined as the smallest Sigma-algebra that contains all open sets in R\mathbb{R}R. This property makes it crucial for defining Borel measures, which extend the concept of length, area, and volume to more complex sets. The Borel Sigma-Algebra is essential for establishing the framework for probability theory, where Borel sets can represent events in a continuous sample space.

Wave Equation Numerical Methods

Wave equation numerical methods are computational techniques used to solve the wave equation, which describes the propagation of waves through various media. The wave equation, typically expressed as

∂2u∂t2=c2∇2u,\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u,∂t2∂2u​=c2∇2u,

is fundamental in fields such as physics, engineering, and applied mathematics. Numerical methods, such as Finite Difference Methods (FDM), Finite Element Methods (FEM), and Spectral Methods, are employed to approximate the solutions when analytical solutions are challenging to obtain.

These methods involve discretizing the spatial and temporal domains into grids or elements, allowing the continuous wave behavior to be represented and solved using algorithms. For instance, in FDM, the partial derivatives are approximated using differences between grid points, leading to a system of equations that can be solved iteratively. Overall, these numerical approaches are essential for simulating wave phenomena in real-world applications, including acoustics, electromagnetism, and fluid dynamics.

Kmp Algorithm Efficiency

The Knuth-Morris-Pratt (KMP) algorithm is an efficient string searching algorithm that finds occurrences of a pattern within a given text. Its efficiency primarily comes from its ability to avoid unnecessary comparisons by utilizing information gathered during the pattern matching process. The KMP algorithm preprocesses the pattern to create a longest prefix-suffix (LPS) array, which allows it to skip sections of the text that have already been matched, leading to a time complexity of O(n+m)O(n + m)O(n+m), where nnn is the length of the text and mmm is the length of the pattern. This is a significant improvement over naive string searching algorithms, which can have a worst-case time complexity of O(n×m)O(n \times m)O(n×m). The space complexity of the KMP algorithm is O(m)O(m)O(m) due to the storage of the LPS array, making it an efficient choice for practical applications in text processing and data searching.