StudentsEducators

Black-Scholes

The Black-Scholes model, developed by Fischer Black, Myron Scholes, and Robert Merton in the early 1970s, is a mathematical framework used to determine the theoretical price of European-style options. The model assumes that the stock price follows a Geometric Brownian Motion with constant volatility and that markets are efficient, meaning that prices reflect all available information. The core of the model is encapsulated in the Black-Scholes formula, which calculates the price of a call option CCC as:

C=S0N(d1)−Xe−rtN(d2)C = S_0 N(d_1) - X e^{-rt} N(d_2)C=S0​N(d1​)−Xe−rtN(d2​)

where:

  • S0S_0S0​ is the current stock price,
  • XXX is the strike price of the option,
  • rrr is the risk-free interest rate,
  • ttt is the time to expiration,
  • N(d)N(d)N(d) is the cumulative distribution function of the standard normal distribution, and
  • d1d_1d1​ and d2d_2d2​ are calculated using the following equations:
d1=ln⁡(S0/X)+(r+σ2/2)tσtd_1 = \frac{\ln(S_0 / X) + (r + \sigma^2 / 2)t}{\sigma \sqrt{t}}d1​=σt​ln(S0​/X)+(r+σ2/2)t​ d2=d1−σtd_2 = d_1 - \sigma \sqrt{t}d2​=d1​−σt​

In this context, σ\sigmaσ represents the volatility of the stock.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Phase-Change Memory

Phase-Change Memory (PCM) is a type of non-volatile storage technology that utilizes the unique properties of certain materials, specifically chalcogenides, to switch between amorphous and crystalline states. This phase change is achieved through the application of heat, allowing the material to change its resistance and thus represent binary data. The amorphous state has a high resistance, representing a '0', while the crystalline state has a low resistance, representing a '1'.

PCM offers several advantages over traditional memory technologies, such as faster write speeds, greater endurance, and higher density. Additionally, PCM can potentially bridge the gap between DRAM and flash memory, combining the speed of volatile memory with the non-volatility of flash. As a result, PCM is considered a promising candidate for future memory solutions in computing systems, especially in applications requiring high performance and energy efficiency.

Trie Space Complexity

The space complexity of a Trie data structure primarily depends on the number of keys stored and the character set used for the keys. In a Trie, each node represents a single character of a key, and the total number of nodes is influenced by both the number of keys nnn and the average length mmm of the keys. Thus, the space complexity can be expressed as O(n⋅m)O(n \cdot m)O(n⋅m), where nnn is the number of keys and mmm is the average length of those keys.

Moreover, each node typically contains a list or map of child nodes corresponding to the possible characters in the character set, which can further increase space usage, especially for large character sets. For instance, if the character set has kkk characters, then each node might have up to kkk child nodes. This leads to a potential worst-case space complexity of O(n⋅k⋅m)O(n \cdot k \cdot m)O(n⋅k⋅m) if all nodes are fully populated. Therefore, while Tries can be very efficient in terms of search time, they can also consume significant memory, particularly when dealing with a large number of keys or a broad character set.

Laffer Curve Fiscal Policy

The Laffer Curve is a fundamental concept in fiscal policy that illustrates the relationship between tax rates and tax revenue. It suggests that there is an optimal tax rate that maximizes revenue; if tax rates are too low, revenue will be insufficient, and if they are too high, they can discourage economic activity, leading to lower revenue. The curve is typically represented graphically, showing that as tax rates increase from zero, tax revenue initially rises but eventually declines after reaching a certain point.

This phenomenon occurs because excessively high tax rates can lead to reduced work incentives, tax evasion, and capital flight, which can ultimately harm the economy. The key takeaway is that policymakers must carefully consider the balance between tax rates and economic growth to achieve optimal revenue without stifling productivity. Understanding the Laffer Curve can help inform decisions on tax policy, aiming to stimulate economic activity while ensuring sufficient funding for public services.

Kolmogorov Spectrum

The Kolmogorov Spectrum relates to the statistical properties of turbulence in fluid dynamics, primarily describing how energy is distributed across different scales of motion. According to the Kolmogorov theory, the energy spectrum E(k)E(k)E(k) of turbulent flows scales with the wave number kkk as follows:

E(k)∼k−5/3E(k) \sim k^{-5/3}E(k)∼k−5/3

This relationship indicates that larger scales (or lower wave numbers) contain more energy than smaller scales, which is a fundamental characteristic of homogeneous and isotropic turbulence. The spectrum emerges from the idea that energy is transferred from larger eddies to smaller ones until it dissipates as heat, particularly at the smallest scales where viscosity becomes significant. The Kolmogorov Spectrum is crucial in various applications, including meteorology, oceanography, and engineering, as it helps in understanding and predicting the behavior of turbulent flows.

Brain Connectomics

Brain Connectomics is a multidisciplinary field that focuses on mapping and understanding the complex networks of connections within the human brain. It involves the use of advanced neuroimaging techniques, such as functional MRI (fMRI) and diffusion tensor imaging (DTI), to visualize and analyze the brain's structural and functional connectivity. The aim is to create a comprehensive atlas of neural connections, often referred to as the "connectome," which can help in deciphering how different regions of the brain communicate and collaborate during various cognitive processes.

Key aspects of brain connectomics include:

  • Structural Connectivity: Refers to the physical wiring of neurons and the pathways they form.
  • Functional Connectivity: Indicates the temporal correlations between spatially remote brain regions, reflecting their interactive activity.

Understanding these connections is crucial for advancing our knowledge of brain disorders, cognitive functions, and the overall architecture of the brain.

Endogenous Growth

Endogenous growth theory posits that economic growth is primarily driven by internal factors rather than external influences. This approach emphasizes the role of technological innovation, human capital, and knowledge accumulation as central components of growth. Unlike traditional growth models, which often treat technological progress as an exogenous factor, endogenous growth theories suggest that policy decisions, investments in education, and research and development can significantly impact the overall growth rate.

Key features of endogenous growth include:

  • Knowledge Spillovers: Innovations can benefit multiple firms, leading to increased productivity across the economy.
  • Human Capital: Investment in education enhances the skills of the workforce, fostering innovation and productivity.
  • Increasing Returns to Scale: Firms can experience increasing returns when they invest in knowledge and technology, leading to sustained growth.

Mathematically, the growth rate ggg can be expressed as a function of human capital HHH and technology AAA:

g=f(H,A)g = f(H, A)g=f(H,A)

This indicates that growth is influenced by the levels of human capital and technological advancement within the economy.