StudentsEducators

Black-Scholes Option Pricing Derivation

The Black-Scholes option pricing model is a mathematical framework used to determine the theoretical price of options. It is based on several key assumptions, including that the stock price follows a geometric Brownian motion and that markets are efficient. The derivation begins by defining a portfolio consisting of a long position in the call option and a short position in the underlying asset. By applying Itô's Lemma and the principle of no-arbitrage, we can derive the Black-Scholes Partial Differential Equation (PDE). The solution to this PDE yields the Black-Scholes formula for a European call option:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

where N(d)N(d)N(d) is the cumulative distribution function of the standard normal distribution, SSS is the current stock price, KKK is the strike price, rrr is the risk-free interest rate, TTT is the time to maturity, and d1d_1d1​ and d2d_2d2​ are defined as:

d1=ln⁡(S/K)+(r+σ2/2)(T−t)σT−td_1 = \frac{\ln(S/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}}d1​=σT−t​ln(S/K)+(r+σ2/2)(T−t)​ d2=d1−σT−td_2 = d_1 - \sigma \sqrt{T-t}d2​=d1​−σT−t​

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Fiber Bragg Gratings

Fiber Bragg Gratings (FBGs) are a type of optical device used in fiber optics that reflect specific wavelengths of light while transmitting others. They are created by inducing a periodic variation in the refractive index of the optical fiber core. This periodic structure acts like a mirror for certain wavelengths, which are determined by the grating period Λ\LambdaΛ and the refractive index nnn of the fiber, following the Bragg condition given by the equation:

λB=2nΛ\lambda_B = 2n\LambdaλB​=2nΛ

where λB\lambda_BλB​ is the wavelength of light reflected. FBGs are widely used in various applications, including sensing, telecommunications, and laser technology, due to their ability to measure strain and temperature changes accurately. Their advantages include high sensitivity, immunity to electromagnetic interference, and the capability of being embedded within structures for real-time monitoring.

Peltier Cooling Effect

The Peltier Cooling Effect is a thermoelectric phenomenon that occurs when an electric current passes through two different conductors or semiconductors, causing a temperature difference. This effect is named after the French physicist Jean Charles Athanase Peltier, who discovered it in 1834. When current flows through a junction of dissimilar materials, one side absorbs heat (cooling it down), while the other side releases heat (heating it up). This can be mathematically expressed by the equation:

Q=Π⋅IQ = \Pi \cdot IQ=Π⋅I

where QQQ is the heat absorbed or released, Π\PiΠ is the Peltier coefficient, and III is the electric current. The effectiveness of this cooling effect makes it useful in applications such as portable refrigerators, electronic cooling systems, and temperature stabilization devices. However, it is important to note that the efficiency of Peltier coolers is typically lower than that of traditional refrigeration systems, primarily due to the heat generated at the junctions during operation.

Ramsey Growth Model Consumption Smoothing

The Ramsey Growth Model is a foundational framework in economics that explores how individuals optimize their consumption over time in the face of uncertainty and changing income levels. Consumption smoothing refers to the strategy whereby individuals or households aim to maintain a stable level of consumption throughout their lives, rather than allowing consumption to fluctuate significantly with changes in income. This behavior is driven by the desire to maximize utility over time, which is often represented through a utility function that emphasizes intertemporal preferences.

In essence, the model suggests that individuals make decisions based on the trade-off between present and future consumption, which can be mathematically expressed as:

U(ct)=∑t=0∞ct1−σ1−σ⋅e−ρtU(c_t) = \sum_{t=0}^{\infty} \frac{c_t^{1-\sigma}}{1-\sigma} \cdot e^{-\rho t}U(ct​)=t=0∑∞​1−σct1−σ​​⋅e−ρt

where U(ct)U(c_t)U(ct​) is the utility derived from consumption ctc_tct​, σ\sigmaσ is the coefficient of relative risk aversion, and ρ\rhoρ is the rate of time preference. By choosing to smooth consumption over time, individuals can effectively manage risk and uncertainty, leading to a more stable and predictable lifestyle. This concept has significant implications for saving behavior, investment decisions, and economic policy, particularly in the context of promoting long-term growth and stability in an economy.

Lorenz Efficiency

Lorenz Efficiency is a measure used to assess the efficiency of income distribution within a given population. It is derived from the Lorenz curve, which graphically represents the distribution of income or wealth among individuals or households. The Lorenz curve plots the cumulative share of the total income received by the bottom x%x \%x% of the population against x%x \%x% of the population itself. A perfectly equal distribution would be represented by a 45-degree line, while the area between the Lorenz curve and this line indicates the degree of inequality.

To quantify Lorenz Efficiency, we can calculate it as follows:

Lorenz Efficiency=AA+B\text{Lorenz Efficiency} = \frac{A}{A + B}Lorenz Efficiency=A+BA​

where AAA is the area between the 45-degree line and the Lorenz curve, and BBB is the area under the Lorenz curve. A Lorenz Efficiency of 1 signifies perfect equality, while a value closer to 0 indicates higher inequality. This metric is particularly useful for policymakers aiming to gauge the impact of economic policies on income distribution and equality.

Phillips Curve Expectations Adjustment

The Phillips Curve Expectations Adjustment refers to the modification of the traditional Phillips Curve, which illustrates the inverse relationship between inflation and unemployment. In its original form, the Phillips Curve suggested that lower unemployment rates could be achieved at the cost of higher inflation. However, this relationship is influenced by inflation expectations. When individuals and businesses anticipate higher inflation, they adjust their behavior accordingly, which can shift the Phillips Curve.

This adjustment leads to a scenario known as the "expectations-augmented Phillips Curve," represented mathematically as:

πt=πe+β(Un−Ut)\pi_t = \pi_e + \beta(U_n - U_t)πt​=πe​+β(Un​−Ut​)

where πt\pi_tπt​ is the actual inflation rate, πe\pi_eπe​ is the expected inflation rate, UnU_nUn​ is the natural rate of unemployment, and UtU_tUt​ is the actual unemployment rate. As expectations change, the trade-off between inflation and unemployment also shifts, complicating monetary policy decisions. Thus, understanding this adjustment is crucial for policymakers aiming to manage inflation and employment effectively.

Lipidomics In Disease Biomarkers

Lipidomics is a subfield of metabolomics that focuses on the comprehensive analysis of lipids within biological systems. It plays a crucial role in identifying disease biomarkers, as alterations in lipid profiles can indicate the presence or progression of various diseases. For instance, changes in specific lipid classes such as phospholipids, sphingolipids, and fatty acids can be associated with conditions like cardiovascular diseases, diabetes, and cancer. By employing advanced techniques such as mass spectrometry and chromatography, researchers can detect these lipid changes with high sensitivity and specificity. The integration of lipidomics with other omics technologies can provide a more holistic understanding of disease mechanisms, ultimately leading to improved diagnostic and therapeutic strategies.