The Cauchy-Riemann equations are a set of two partial differential equations that are fundamental in the field of complex analysis. They provide a necessary and sufficient condition for a function to be holomorphic (i.e., complex differentiable) at a point in the complex plane. If we express as , where , then the Cauchy-Riemann equations state that:
Here, and are the real and imaginary parts of the function, respectively. These equations imply that if a function satisfies the Cauchy-Riemann equations and is continuous, it is differentiable everywhere in its domain, leading to the conclusion that holomorphic functions are infinitely differentiable and have power series expansions in their neighborhoods. Thus, the Cauchy-Riemann equations are pivotal in understanding the behavior of complex functions.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.