StudentsEducators

Chi-Square Test

The Chi-Square Test is a statistical method used to determine whether there is a significant association between categorical variables. It compares the observed frequencies in each category of a contingency table to the frequencies that would be expected if there were no association between the variables. The test calculates a statistic, denoted as χ2\chi^2χ2, using the formula:

χ2=∑(Oi−Ei)2Ei\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}χ2=∑Ei​(Oi​−Ei​)2​

where OiO_iOi​ is the observed frequency and EiE_iEi​ is the expected frequency for each category. A high χ2\chi^2χ2 value indicates a significant difference between observed and expected frequencies, suggesting that the variables are related. The results are interpreted using a p-value obtained from the Chi-Square distribution, allowing researchers to decide whether to reject the null hypothesis of independence.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Plasmonic Hot Electron Injection

Plasmonic Hot Electron Injection refers to the process where hot electrons, generated by the decay of surface plasmons in metallic nanostructures, are injected into a nearby semiconductor or insulator. This occurs when incident light excites surface plasmons on the metal's surface, causing a rapid increase in energy among the electrons, leading to a non-equilibrium distribution of energy. These high-energy electrons can then overcome the energy barrier at the interface and be transferred into the adjacent material, which can significantly enhance photonic and electronic processes.

The efficiency of this injection is influenced by several factors, including the material properties, interface quality, and excitation wavelength. This mechanism has promising applications in photovoltaics, sensing, and catalysis, as it can facilitate improved charge separation and enhance overall device performance.

Lyapunov Function Stability

Lyapunov Function Stability is a method used in control theory and dynamical systems to assess the stability of equilibrium points. A Lyapunov function V(x)V(x)V(x) is a scalar function that is continuous, positive definite, and decreases over time along the trajectories of the system. Specifically, it satisfies the conditions:

  1. V(x)>0V(x) > 0V(x)>0 for all x≠0x \neq 0x=0 and V(0)=0V(0) = 0V(0)=0.
  2. The derivative V˙(x)\dot{V}(x)V˙(x) (the time derivative of VVV) is negative definite or negative semi-definite.

If such a function can be found, it implies that the equilibrium point is stable. The significance of Lyapunov functions lies in their ability to provide a systematic way to demonstrate stability without needing to solve the system's differential equations explicitly. This approach is particularly useful in nonlinear systems where traditional methods may fall short.

Fama-French

The Fama-French model is an asset pricing model introduced by Eugene Fama and Kenneth French in the early 1990s. It expands upon the traditional Capital Asset Pricing Model (CAPM) by incorporating size and value factors to explain stock returns better. The model is based on three key factors:

  1. Market Risk (Beta): This measures the sensitivity of a stock's returns to the overall market returns.
  2. Size (SMB): This is the "Small Minus Big" factor, representing the excess returns of small-cap stocks over large-cap stocks.
  3. Value (HML): This is the "High Minus Low" factor, capturing the excess returns of value stocks (those with high book-to-market ratios) over growth stocks (with low book-to-market ratios).

The Fama-French three-factor model can be represented mathematically as:

Ri=Rf+βi(Rm−Rf)+si⋅SMB+hi⋅HML+ϵiR_i = R_f + \beta_i (R_m - R_f) + s_i \cdot SMB + h_i \cdot HML + \epsilon_iRi​=Rf​+βi​(Rm​−Rf​)+si​⋅SMB+hi​⋅HML+ϵi​

where RiR_iRi​ is the expected return on asset iii, RfR_fRf​ is the risk-free rate, RmR_mRm​ is the return on the market portfolio, and ϵi\epsilon_iϵi​ is the error term. This model has been widely adopted in finance for asset management and portfolio evaluation due to its improved explanatory power over

Arrow-Debreu Model

The Arrow-Debreu Model is a fundamental concept in general equilibrium theory that describes how markets can achieve an efficient allocation of resources under certain conditions. Developed by economists Kenneth Arrow and Gérard Debreu in the 1950s, the model operates under the assumption of perfect competition, complete markets, and the absence of externalities. It posits that in a competitive economy, consumers maximize their utility subject to budget constraints, while firms maximize profits by producing goods at minimum cost.

The model demonstrates that under these ideal conditions, there exists a set of prices that equates supply and demand across all markets, leading to an Pareto efficient allocation of resources. Mathematically, this can be represented as finding a price vector ppp such that:

∑ixi=∑jyj\sum_{i} x_{i} = \sum_{j} y_{j}i∑​xi​=j∑​yj​

where xix_ixi​ is the quantity supplied by producers and yjy_jyj​ is the quantity demanded by consumers. The model also emphasizes the importance of state-contingent claims, allowing agents to hedge against uncertainty in future states of the world, which adds depth to the understanding of risk in economic transactions.

Turing Reduction

Turing Reduction is a concept in computational theory that describes a way to relate the complexity of decision problems. Specifically, a problem AAA is said to be Turing reducible to a problem BBB (denoted as A≤TBA \leq_T BA≤T​B) if there exists a Turing machine that can decide problem AAA using an oracle for problem BBB. This means that the Turing machine can make a finite number of queries to the oracle, which provides answers to instances of BBB, allowing the machine to eventually decide instances of AAA.

In simpler terms, if we can solve BBB efficiently (or even at all), we can also solve AAA by leveraging BBB as a tool. Turing reductions are particularly significant in classifying problems based on their computational difficulty and understanding the relationships between different problems, especially in the context of NP-completeness and decidability.

Nanoelectromechanical Resonators

Nanoelectromechanical Resonators (NEMRs) are advanced devices that integrate mechanical and electrical systems at the nanoscale. These resonators exploit the principles of mechanical vibrations and electrical signals to perform various functions, such as sensing, signal processing, and frequency generation. They typically consist of a tiny mechanical element, often a beam or membrane, that resonates at specific frequencies when subjected to external forces or electrical stimuli.

The performance of NEMRs is influenced by factors such as their mass, stiffness, and damping, which can be described mathematically using equations of motion. The resonance frequency f0f_0f0​ of a simple mechanical oscillator can be expressed as:

f0=12πkmf_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}f0​=2π1​mk​​

where kkk is the stiffness and mmm is the mass of the vibrating structure. Due to their small size, NEMRs can achieve high sensitivity and low power consumption, making them ideal for applications in telecommunications, medical diagnostics, and environmental monitoring.