StudentsEducators

General Equilibrium

General Equilibrium refers to a state in economic theory where supply and demand are balanced across all markets in an economy simultaneously. In this framework, the prices of goods and services adjust so that the quantity supplied equals the quantity demanded in every market. This concept is essential for understanding how various sectors of the economy interact with each other.

One of the key models used to analyze general equilibrium is the Arrow-Debreu model, which demonstrates how competitive equilibrium can exist under certain assumptions, such as perfect information and complete markets. Mathematically, we can express the equilibrium conditions as:

∑i=1nDi(p)=∑i=1nSi(p)\sum_{i=1}^{n} D_i(p) = \sum_{i=1}^{n} S_i(p)i=1∑n​Di​(p)=i=1∑n​Si​(p)

where Di(p)D_i(p)Di​(p) represents the demand for good iii at price ppp and Si(p)S_i(p)Si​(p) represents the supply of good iii at price ppp. General equilibrium analysis helps economists understand the interdependencies within an economy and the effects of policy changes or external shocks on overall economic stability.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Brillouin Light Scattering

Brillouin Light Scattering (BLS) is a powerful technique used to investigate the mechanical properties and dynamics of materials at the microscopic level. It involves the interaction of coherent light, typically from a laser, with acoustic waves (phonons) in a medium. As the light scatters off these phonons, it experiences a shift in frequency, known as the Brillouin shift, which is directly related to the material's elastic properties and sound velocity. This phenomenon can be described mathematically by the relation:

Δf=2nλvs\Delta f = \frac{2n}{\lambda}v_sΔf=λ2n​vs​

where Δf\Delta fΔf is the frequency shift, nnn is the refractive index, λ\lambdaλ is the wavelength of the laser light, and vsv_svs​ is the speed of sound in the material. BLS is utilized in various fields, including material science, biophysics, and telecommunications, making it an essential tool for both research and industrial applications. The non-destructive nature of the technique allows for the study of various materials without altering their properties.

Crispr-Based Gene Repression

Crispr-based gene repression is a powerful tool used in molecular biology to selectively inhibit gene expression. This technique utilizes a modified version of the CRISPR-Cas9 system, where the Cas9 protein is deactivated (often referred to as dCas9) and fused with a repressor domain. When targeted to specific DNA sequences by a guide RNA, dCas9 binds to the DNA but does not cut it, effectively blocking the transcription machinery from accessing the gene. This process can lead to efficient silencing of unwanted genes, which is particularly useful in research, therapeutic applications, and biotechnology. The versatility of this system allows for the simultaneous repression of multiple genes, enabling complex genetic studies and potential treatments for diseases caused by gene overexpression.

Solow Residual Productivity

The Solow Residual Productivity, named after economist Robert Solow, represents a measure of the portion of output in an economy that cannot be attributed to the accumulation of capital and labor. In essence, it captures the effects of technological progress and efficiency improvements that drive economic growth. The formula to calculate the Solow residual is derived from the Cobb-Douglas production function:

Y=A⋅Kα⋅L1−αY = A \cdot K^\alpha \cdot L^{1-\alpha}Y=A⋅Kα⋅L1−α

where YYY is total output, AAA is the total factor productivity (TFP), KKK is capital, LLL is labor, and α\alphaα is the output elasticity of capital. By rearranging this equation, the Solow residual AAA can be isolated, highlighting the contributions of technological advancements and other factors that increase productivity without requiring additional inputs. Therefore, the Solow Residual is crucial for understanding long-term economic growth, as it emphasizes the role of innovation and efficiency beyond mere input increases.

Elliptic Curves

Elliptic curves are a fascinating area of mathematics, particularly in number theory and algebraic geometry. They are defined by equations of the form

y2=x3+ax+by^2 = x^3 + ax + by2=x3+ax+b

where aaa and bbb are constants that satisfy certain conditions to ensure that the curve has no singular points. Elliptic curves possess a rich structure and can be visualized as smooth, looping shapes in a two-dimensional plane. Their applications are vast, ranging from cryptography—where they provide security in elliptic curve cryptography (ECC)—to complex analysis and even solutions to Diophantine equations. The study of these curves involves understanding their group structure, where points on the curve can be added together according to specific rules, making them an essential tool in modern mathematical research and practical applications.

Metabolic Flux Balance

Metabolic Flux Balance (MFB) is a theoretical framework used to analyze and predict the flow of metabolites through a metabolic network. It operates under the principle of mass balance, which asserts that the input of metabolites into a system must equal the output plus any changes in storage. This is often represented mathematically as:

∑in−∑out+∑storage=0\sum_{in} - \sum_{out} + \sum_{storage} = 0in∑​−out∑​+storage∑​=0

In MFB, the fluxes of various metabolic pathways are modeled as variables, and the relationships between them are constrained by stoichiometric coefficients derived from biochemical reactions. This method allows researchers to identify critical pathways, optimize yields of desired products, and enhance our understanding of cellular behaviors under different conditions. Through computational tools, MFB can also facilitate the design of metabolic engineering strategies for industrial applications.

Hadamard Matrix Applications

Hadamard matrices are square matrices whose entries are either +1 or -1, and they possess properties that make them highly useful in various fields. One prominent application is in signal processing, where Hadamard transforms are employed to efficiently process and compress data. Additionally, these matrices play a crucial role in error-correcting codes; specifically, they are used in the construction of codes that can detect and correct multiple errors in data transmission. In the realm of quantum computing, Hadamard matrices facilitate the creation of superposition states, allowing for the manipulation of qubits. Furthermore, their applications extend to combinatorial designs, particularly in constructing balanced incomplete block designs, which are essential in statistical experiments. Overall, Hadamard matrices provide a versatile tool across diverse scientific and engineering disciplines.