StudentsEducators

Convex Hull Trick

The Convex Hull Trick is an efficient algorithm used to optimize certain types of linear functions, particularly in dynamic programming and computational geometry. It allows for the quick evaluation of the minimum (or maximum) value of a set of linear functions at a given point. The main idea is to maintain a collection of lines (or linear functions) and efficiently query for the best one based on the current input.

When a new line is added, it may replace older lines if it provides a better solution for some range of input values. To achieve this, the algorithm maintains a convex hull of the lines, hence the name. The typical operations include:

  • Adding a new line: Insert a new linear function, represented as f(x)=mx+bf(x) = mx + bf(x)=mx+b.
  • Querying: Find the minimum (or maximum) value of the set of lines at a specific xxx.

This trick reduces the time complexity of querying from linear to logarithmic, significantly speeding up computations in many applications, such as finding optimal solutions in various optimization problems.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hamiltonian System

A Hamiltonian system is a mathematical framework used to describe the evolution of a physical system in classical mechanics. It is characterized by the Hamiltonian function H(q,p,t)H(q, p, t)H(q,p,t), which represents the total energy of the system, where qqq denotes the generalized coordinates and ppp the generalized momenta. The dynamics of the system are governed by Hamilton's equations, which are given as:

dqdt=∂H∂p,dpdt=−∂H∂q\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}dtdq​=∂p∂H​,dtdp​=−∂q∂H​

These equations describe how the position and momentum of a system change over time. One of the key features of Hamiltonian systems is their ability to conserve quantities such as energy and momentum, leading to predictable and stable behavior. Furthermore, Hamiltonian mechanics provides a powerful framework for transitioning to quantum mechanics, making it a fundamental concept in both classical and modern physics.

Bargaining Nash

The Bargaining Nash solution, derived from Nash's bargaining theory, is a fundamental concept in cooperative game theory that deals with the negotiation process between two or more parties. It provides a method for determining how to divide a surplus or benefit based on certain fairness axioms. The solution is characterized by two key properties: efficiency, meaning that the agreement maximizes the total benefit available to the parties, and symmetry, which ensures that if the parties are identical, they should receive identical outcomes.

Mathematically, if we denote the utility levels of parties as u1u_1u1​ and u2u_2u2​, the Nash solution can be expressed as maximizing the product of their utilities above their disagreement points d1d_1d1​ and d2d_2d2​:

max⁡(u1,u2)(u1−d1)(u2−d2)\max_{(u_1, u_2)} (u_1 - d_1)(u_2 - d_2)(u1​,u2​)max​(u1​−d1​)(u2​−d2​)

This framework allows for the consideration of various negotiation factors, including the parties' alternatives and the inherent fairness in the distribution of resources. The Nash bargaining solution is widely applicable in economics, political science, and any situation where cooperative negotiations are essential.

Hamiltonian Energy

The Hamiltonian energy, often denoted as HHH, is a fundamental concept in classical mechanics, quantum mechanics, and statistical mechanics. It represents the total energy of a system, encompassing both kinetic energy and potential energy. Mathematically, the Hamiltonian is typically expressed as:

H(q,p,t)=T(q,p)+V(q)H(q, p, t) = T(q, p) + V(q)H(q,p,t)=T(q,p)+V(q)

where TTT is the kinetic energy, VVV is the potential energy, qqq represents the generalized coordinates, and ppp represents the generalized momenta. In quantum mechanics, the Hamiltonian operator plays a crucial role in the Schrödinger equation, governing the time evolution of quantum states. The Hamiltonian formalism provides powerful tools for analyzing the dynamics of systems, particularly in terms of symmetries and conservation laws, making it a cornerstone of theoretical physics.

Rational Expectations

Rational Expectations is an economic theory that posits individuals form their expectations about the future based on all available information and the understanding of economic models. This means that people do not systematically make errors when predicting future economic conditions; instead, their forecasts are on average correct. The concept implies that economic agents will adjust their behavior and decisions based on anticipated policy changes or economic events, leading to outcomes that reflect their informed expectations.

For instance, if a government announces an increase in taxes, individuals are likely to anticipate this change and adjust their spending and saving behaviors accordingly. The idea contrasts with earlier theories that assumed individuals might rely on past experiences or simple heuristics, resulting in biased expectations. Rational Expectations plays a significant role in various economic models, particularly in macroeconomics, influencing the effectiveness of fiscal and monetary policies.

Graphene-Based Field-Effect Transistors

Graphene-Based Field-Effect Transistors (GFETs) are innovative electronic devices that leverage the unique properties of graphene, a single layer of carbon atoms arranged in a hexagonal lattice. Graphene is renowned for its exceptional electrical conductivity, high mobility of charge carriers, and mechanical strength, making it an ideal material for transistor applications. In a GFET, the flow of electrical current is modulated by applying a voltage to a gate electrode, which influences the charge carrier density in the graphene channel. This mechanism allows GFETs to achieve high-speed operation and low power consumption, potentially outperforming traditional silicon-based transistors. Moreover, the ability to integrate GFETs with flexible substrates opens up new avenues for applications in wearable electronics and advanced sensing technologies. The ongoing research in GFETs aims to enhance their performance further and explore their potential in next-generation electronic devices.

High-Entropy Alloys

High-Entropy Alloys (HEAs) are a class of metallic materials characterized by the presence of five or more principal elements, each typically contributing between 5% and 35% to the total composition. This unique composition leads to a high configurational entropy, which stabilizes a simple solid-solution phase at room temperature. The resulting microstructures often exhibit remarkable properties, such as enhanced strength, improved ductility, and excellent corrosion resistance.

In HEAs, the synergy between different elements can result in unique mechanisms for deformation and resistance to wear, making them attractive for various applications, including aerospace and automotive industries. The design of HEAs often involves a careful balance of elements to optimize their mechanical and thermal properties while maintaining a cost-effective production process.