StudentsEducators

Adaboost

Adaboost, short for Adaptive Boosting, is a powerful ensemble learning technique that combines multiple weak classifiers to form a strong classifier. The primary idea behind Adaboost is to sequentially train a series of classifiers, where each subsequent classifier focuses on the mistakes made by the previous ones. It assigns weights to each training instance, increasing the weight for instances that were misclassified, thereby emphasizing their importance in the learning process.

The final model is constructed by combining the outputs of all the weak classifiers, weighted by their accuracy. Mathematically, the predicted output H(x)H(x)H(x) of the ensemble is given by:

H(x)=∑m=1Mαmhm(x)H(x) = \sum_{m=1}^{M} \alpha_m h_m(x)H(x)=m=1∑M​αm​hm​(x)

where hm(x)h_m(x)hm​(x) is the m-th weak classifier and αm\alpha_mαm​ is its corresponding weight. This approach improves the overall performance and robustness of the model, making Adaboost widely used in various applications such as image classification and text categorization.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Plasmonic Waveguides

Plasmonic waveguides are structures that guide surface plasmons, which are coherent oscillations of free electrons at the interface between a metal and a dielectric material. These waveguides enable the confinement and transmission of light at dimensions smaller than the wavelength of the light itself, making them essential for applications in nanophotonics and optical communications. The unique properties of plasmonic waveguides arise from the interaction between electromagnetic waves and the collective oscillations of electrons in metals, leading to phenomena such as superlensing and enhanced light-matter interactions.

Typically, there are several types of plasmonic waveguides, including:

  • Metallic thin films: These can support surface plasmons and are often used in sensors.
  • Metal nanostructures: These include nanoparticles and nanorods that can manipulate light at the nanoscale.
  • Plasmonic slots: These are designed to enhance field confinement and can be used in integrated photonic circuits.

The effective propagation of surface plasmons is described by the dispersion relation, which depends on the permittivity of both the metal and the dielectric, typically represented in a simplified form as:

k=ωcεmεdεm+εdk = \frac{\omega}{c} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}}k=cω​εm​+εd​εm​εd​​​

where kkk is the wave

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization algorithm commonly used in machine learning and deep learning to minimize a loss function. Unlike the traditional gradient descent, which computes the gradient using the entire dataset, SGD updates the model weights using only a single sample (or a small batch) at each iteration. This makes it faster and allows it to escape local minima more effectively. The update rule for SGD can be expressed as:

θ=θ−η∇J(θ;x(i),y(i))\theta = \theta - \eta \nabla J(\theta; x^{(i)}, y^{(i)})θ=θ−η∇J(θ;x(i),y(i))

where θ\thetaθ represents the parameters, η\etaη is the learning rate, and ∇J(θ;x(i),y(i))\nabla J(\theta; x^{(i)}, y^{(i)})∇J(θ;x(i),y(i)) is the gradient of the loss function with respect to a single training example (x(i),y(i))(x^{(i)}, y^{(i)})(x(i),y(i)). While SGD can converge more quickly than standard gradient descent, it may exhibit more fluctuation in the loss function due to its reliance on individual samples. To mitigate this, techniques such as momentum, learning rate decay, and mini-batch gradient descent are often employed.

Few-Shot Learning

Few-Shot Learning (FSL) is a subfield of machine learning that focuses on training models to recognize new classes with very limited labeled data. Unlike traditional approaches that require large datasets for each category, FSL seeks to generalize from only a few examples, typically ranging from one to a few dozen. This is particularly useful in scenarios where obtaining labeled data is costly or impractical.

In FSL, the model often employs techniques such as meta-learning, where it learns to learn from a variety of tasks, allowing it to adapt quickly to new ones. Common methods include using prototypical networks, which compute a prototype representation for each class based on the limited examples, or employing transfer learning where a pre-trained model is fine-tuned on the few available samples. Overall, Few-Shot Learning aims to mimic human-like learning capabilities, enabling machines to perform tasks with minimal data input.

Perovskite Lattice Distortion Effects

Perovskite materials, characterized by the general formula ABX₃, exhibit significant lattice distortion effects that can profoundly influence their physical properties. These distortions arise from the differences in ionic radii between the A and B cations, leading to a deformation of the cubic structure into lower symmetry phases, such as orthorhombic or tetragonal forms. Such distortions can affect various properties, including ferroelectricity, superconductivity, and ionic conductivity. For instance, in some perovskites, the degree of distortion is correlated with their ability to undergo phase transitions at certain temperatures, which is crucial for applications in solar cells and catalysts. The effects of lattice distortion can be quantitatively described using the distortion parameters, which often involve calculations of the bond lengths and angles, impacting the electronic band structure and overall material stability.

Batch Normalization

Batch Normalization is a technique used to improve the training of deep neural networks by normalizing the inputs of each layer. This process helps mitigate the problem of internal covariate shift, where the distribution of inputs to a layer changes during training, leading to slower convergence. In essence, Batch Normalization standardizes the input for each mini-batch by subtracting the batch mean and dividing by the batch standard deviation, which can be represented mathematically as:

x^=x−μσ\hat{x} = \frac{x - \mu}{\sigma}x^=σx−μ​

where μ\muμ is the mean and σ\sigmaσ is the standard deviation of the mini-batch. After normalization, the output is scaled and shifted using learnable parameters γ\gammaγ and β\betaβ:

y=γx^+βy = \gamma \hat{x} + \betay=γx^+β

This allows the model to retain the ability to learn complex representations while maintaining stable distributions throughout the network. Overall, Batch Normalization leads to faster training times, improved accuracy, and may reduce the need for careful weight initialization and regularization techniques.

Michelson-Morley

The Michelson-Morley experiment, conducted in 1887 by Albert A. Michelson and Edward W. Morley, aimed to detect the presence of the luminiferous aether, a medium thought to carry light waves. The experiment utilized an interferometer, which split a beam of light into two perpendicular paths, reflecting them back to create an interference pattern. The key hypothesis was that the Earth’s motion through the aether would cause a difference in the travel times of the two beams, leading to a shift in the interference pattern.

Despite meticulous measurements, the experiment found no significant difference, leading to a null result. This outcome suggested that the aether did not exist, challenging classical physics and ultimately contributing to the development of Einstein's theory of relativity. The Michelson-Morley experiment fundamentally changed our understanding of light propagation and the nature of space, reinforcing the idea that the speed of light is constant in all inertial frames.