StudentsEducators

Cryo-Em Structural Determination

Cryo-electron microscopy (Cryo-EM) is a powerful technique used for determining the three-dimensional structures of biological macromolecules at near-atomic resolution. This method involves rapidly freezing samples in a thin layer of vitreous ice, preserving their native state without the need for staining or fixation. Once frozen, a series of two-dimensional images are captured from different angles, which are then processed using advanced algorithms to reconstruct the 3D structure.

The main advantages of Cryo-EM include its ability to analyze large complexes and membrane proteins that are difficult to crystallize, along with the preservation of the biological context of the samples. Additionally, Cryo-EM has dramatically improved in resolution due to advancements in detector technology and image processing techniques, making it a cornerstone in structural biology and drug design.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Quantum Foam In Cosmology

Quantum foam is a concept that arises from quantum mechanics and is particularly significant in cosmology, where it attempts to describe the fundamental structure of spacetime at the smallest scales. At extremely small distances, on the order of the Planck length (∼1.6×10−35\sim 1.6 \times 10^{-35}∼1.6×10−35 meters), spacetime is believed to become turbulent and chaotic due to quantum fluctuations. This foam-like structure suggests that the fabric of the universe is not smooth but rather filled with temporary, ever-changing geometries that can give rise to virtual particles and influence gravitational interactions. Consequently, quantum foam may play a crucial role in understanding phenomena such as black holes and the early universe's conditions during the Big Bang. Moreover, it challenges our classical notions of spacetime, proposing that at these minute scales, the traditional laws of physics may need to be re-evaluated to incorporate the inherent uncertainties of quantum mechanics.

Maxwell’S Equations

Maxwell's Equations are a set of four fundamental equations that describe how electric and magnetic fields interact and propagate through space. They are the cornerstone of classical electromagnetism and can be stated as follows:

  1. Gauss's Law for Electricity: It relates the electric field E\mathbf{E}E to the charge density ρ\rhoρ by stating that the electric flux through a closed surface is proportional to the enclosed charge:
∇⋅E=ρϵ0 \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}∇⋅E=ϵ0​ρ​
  1. Gauss's Law for Magnetism: This equation states that there are no magnetic monopoles; the magnetic field B\mathbf{B}B has no beginning or end:
∇⋅B=0 \nabla \cdot \mathbf{B} = 0∇⋅B=0
  1. Faraday's Law of Induction: It shows how a changing magnetic field induces an electric field:
∇×E=−∂B∂t \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}∇×E=−∂t∂B​
  1. Ampère-Maxwell Law: This law relates the magnetic field to the electric current and the change in electric field:
∇×B=μ0J+μ0 \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0∇×B=μ0​J+μ0​

Normal Subgroup Lattice

The Normal Subgroup Lattice is a graphical representation of the relationships between normal subgroups of a group GGG. In this lattice, each node represents a normal subgroup, and edges indicate inclusion relationships. A subgroup NNN of GGG is called normal if it satisfies the condition gNg−1=NgNg^{-1} = NgNg−1=N for all g∈Gg \in Gg∈G. The structure of the lattice reveals important properties of the group, such as its composition series and how it can be decomposed into simpler components via quotient groups. The lattice is especially useful in group theory, as it helps visualize the connections between different normal subgroups and their corresponding factor groups.

Gru Units

Gru Units are a specialized measurement system used primarily in the fields of physics and engineering to quantify various properties of materials and systems. These units help standardize measurements, making it easier to communicate and compare data across different experiments and applications. For instance, in the context of force, Gru Units may define a specific magnitude based on a reference value, allowing scientists to express forces in a universally understood format.

In practice, Gru Units can encompass a range of dimensions such as length, mass, time, and energy, often relating them through defined conversion factors. This systematic approach aids in ensuring accuracy and consistency in scientific research and industrial applications, where precise calculations are paramount. Overall, Gru Units serve as a fundamental tool in bridging gaps between theoretical concepts and practical implementations.

Fama-French Model

The Fama-French Model is an asset pricing model developed by Eugene Fama and Kenneth French that extends the Capital Asset Pricing Model (CAPM) by incorporating additional factors to better explain stock returns. While the CAPM considers only the market risk factor, the Fama-French model includes two additional factors: size and value. The model suggests that smaller companies (the size factor, SMB - Small Minus Big) and companies with high book-to-market ratios (the value factor, HML - High Minus Low) tend to outperform larger companies and those with low book-to-market ratios, respectively.

The expected return on a stock can be expressed as:

E(Ri)=Rf+βi(E(Rm)−Rf)+si⋅SMB+hi⋅HMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s_i \cdot SMB + h_i \cdot HMLE(Ri​)=Rf​+βi​(E(Rm​)−Rf​)+si​⋅SMB+hi​⋅HML

where:

  • E(Ri)E(R_i)E(Ri​) is the expected return of the asset,
  • RfR_fRf​ is the risk-free rate,
  • βi\beta_iβi​ is the sensitivity of the asset to market risk,
  • E(Rm)−RfE(R_m) - R_fE(Rm​)−Rf​ is the market risk premium,
  • sis_isi​ measures the exposure to the size factor,
  • hih_ihi​ measures the exposure to the value factor.

By accounting for these additional factors, the Fama-French model provides a more comprehensive framework for understanding variations in stock

Cuda Acceleration

CUDA (Compute Unified Device Architecture) is a parallel computing platform and application programming interface (API) model created by NVIDIA. It allows developers to use a NVIDIA GPU (Graphics Processing Unit) for general-purpose processing, which is often referred to as GPGPU (General-Purpose computing on Graphics Processing Units). CUDA acceleration significantly enhances the performance of applications that require heavy computational power, such as scientific simulations, deep learning, and image processing.

By leveraging thousands of cores in a GPU, CUDA enables the execution of many threads simultaneously, resulting in higher throughput compared to traditional CPU processing. Developers can write code in C, C++, Fortran, and other languages, making it accessible to a wide range of programmers. In essence, CUDA transforms the GPU into a powerful computing engine, allowing for the execution of complex algorithms at unprecedented speeds.