StudentsEducators

Eigenvalue Perturbation Theory

Eigenvalue Perturbation Theory is a mathematical framework used to study how the eigenvalues and eigenvectors of a linear operator change when the operator is subject to small perturbations. Given an operator AAA with known eigenvalues λn\lambda_nλn​ and eigenvectors vnv_nvn​, if we consider a perturbed operator A+ϵBA + \epsilon BA+ϵB (where ϵ\epsilonϵ is a small parameter and BBB represents the perturbation), the theory provides a systematic way to approximate the new eigenvalues and eigenvectors.

The first-order perturbation theory states that the change in the eigenvalue can be expressed as:

λn′=λn+ϵ⟨vn,Bvn⟩+O(ϵ2)\lambda_n' = \lambda_n + \epsilon \langle v_n, B v_n \rangle + O(\epsilon^2)λn′​=λn​+ϵ⟨vn​,Bvn​⟩+O(ϵ2)

where ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ denotes the inner product. For the eigenvectors, the first-order correction can be represented as:

vn′=vn+∑m≠nϵ⟨vm,Bvn⟩λn−λmvm+O(ϵ2)v_n' = v_n + \sum_{m \neq n} \frac{\epsilon \langle v_m, B v_n \rangle}{\lambda_n - \lambda_m} v_m + O(\epsilon^2)vn′​=vn​+m=n∑​λn​−λm​ϵ⟨vm​,Bvn​⟩​vm​+O(ϵ2)

This theory is particularly useful in quantum mechanics, structural analysis, and various applied fields, where systems are often subjected to small changes.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Sierpinski Triangle

The Sierpinski Triangle is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. It is created by repeatedly removing the upside-down triangle from the center of a larger triangle. The process begins with a solid triangle, and in each iteration, the middle triangle of every remaining triangle is removed. This results in a pattern that exhibits self-similarity, meaning that each smaller triangle looks like the original triangle.

Mathematically, the number of triangles increases exponentially with each iteration, following the formula Tn=3nT_n = 3^nTn​=3n, where TnT_nTn​ is the number of triangles at iteration nnn. The Sierpinski Triangle is not only a fascinating geometric figure but also illustrates important concepts in chaos theory and the mathematical notion of infinity.

Market Microstructure Bid-Ask Spread

The bid-ask spread is a fundamental concept in market microstructure, representing the difference between the highest price a buyer is willing to pay (the bid) and the lowest price a seller is willing to accept (the ask). This spread serves as an important indicator of market liquidity; a narrower spread typically signifies a more liquid market with higher trading activity, while a wider spread may indicate lower liquidity and increased transaction costs.

The bid-ask spread can be influenced by various factors, including market conditions, trading volume, and the volatility of the asset. Market makers, who provide liquidity by continuously quoting bid and ask prices, play a crucial role in determining the spread. Mathematically, the bid-ask spread can be expressed as:

Bid-Ask Spread=Ask Price−Bid Price\text{Bid-Ask Spread} = \text{Ask Price} - \text{Bid Price}Bid-Ask Spread=Ask Price−Bid Price

In summary, the bid-ask spread is not just a cost for traders but also a reflection of the market's health and efficiency. Understanding this concept is vital for anyone involved in trading or market analysis.

Brillouin Light Scattering

Brillouin Light Scattering (BLS) is a powerful technique used to investigate the mechanical properties and dynamics of materials at the microscopic level. It involves the interaction of coherent light, typically from a laser, with acoustic waves (phonons) in a medium. As the light scatters off these phonons, it experiences a shift in frequency, known as the Brillouin shift, which is directly related to the material's elastic properties and sound velocity. This phenomenon can be described mathematically by the relation:

Δf=2nλvs\Delta f = \frac{2n}{\lambda}v_sΔf=λ2n​vs​

where Δf\Delta fΔf is the frequency shift, nnn is the refractive index, λ\lambdaλ is the wavelength of the laser light, and vsv_svs​ is the speed of sound in the material. BLS is utilized in various fields, including material science, biophysics, and telecommunications, making it an essential tool for both research and industrial applications. The non-destructive nature of the technique allows for the study of various materials without altering their properties.

Zbus Matrix

The Zbus matrix (or impedance bus matrix) is a fundamental concept in power system analysis, particularly in the context of electrical networks and transmission systems. It represents the relationship between the voltages and currents at various buses (nodes) in a power system, providing a compact and organized way to analyze the system's behavior. The Zbus matrix is square and symmetric, where each element ZijZ_{ij}Zij​ indicates the impedance between bus iii and bus jjj.

In mathematical terms, the relationship can be expressed as:

V=Zbus⋅IV = Z_{bus} \cdot IV=Zbus​⋅I

where VVV is the voltage vector, III is the current vector, and ZbusZ_{bus}Zbus​ is the Zbus matrix. Calculating the Zbus matrix is crucial for performing fault analysis, optimal power flow studies, and stability assessments in power systems, allowing engineers to design and optimize electrical networks efficiently.

Menu Cost

Menu Cost refers to the costs associated with changing prices, which can include both the tangible and intangible expenses incurred when a company decides to adjust its prices. These costs can manifest in various ways, such as the need to redesign menus or price lists, update software systems, or communicate changes to customers. For businesses, these costs can lead to price stickiness, where companies are reluctant to change prices frequently due to the associated expenses, even in the face of changing economic conditions.

In economic theory, this concept illustrates why inflation can have a lagging effect on price adjustments. For instance, if a restaurant needs to update its menu, the time and resources spent on this process can deter it from making frequent price changes. Ultimately, menu costs can contribute to inefficiencies in the market by preventing prices from reflecting the true cost of goods and services.

Human-Computer Interaction Design

Human-Computer Interaction (HCI) Design is the interdisciplinary field that focuses on the design and use of computer technology, emphasizing the interfaces between people (users) and computers. The goal of HCI is to create systems that are usable, efficient, and enjoyable to interact with. This involves understanding user needs and behaviors through techniques such as user research, usability testing, and iterative design processes. Key principles of HCI include affordance, which describes how users perceive the potential uses of an object, and feedback, which ensures users receive information about the effects of their actions. By integrating insights from fields like psychology, design, and computer science, HCI aims to improve the overall user experience with technology.