StudentsEducators

Endogenous Money Theory Post-Keynesian

Endogenous Money Theory (EMT) within the Post-Keynesian framework posits that the supply of money is determined by the demand for loans rather than being fixed by the central bank. This theory challenges the traditional view of money supply as exogenous, emphasizing that banks create money through lending when they extend credit to borrowers. As firms and households seek financing for investment and consumption, banks respond by generating deposits, effectively increasing the money supply.

In this context, the relationship can be summarized as follows:

  • Demand for loans drives money creation: When businesses want to invest, they approach banks for loans, prompting banks to create money.
  • Interest rates are influenced by the supply and demand for credit, rather than being solely controlled by central bank policies.
  • The role of the central bank is to ensure liquidity in the system and manage interest rates, but it does not directly control the total amount of money in circulation.

This understanding of money emphasizes the dynamic interplay between financial institutions and the economy, showcasing how monetary phenomena are deeply rooted in real economic activities.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Bode Plot

A Bode Plot is a graphical representation used in control theory and signal processing to analyze the frequency response of a linear time-invariant system. It consists of two plots: the magnitude plot, which shows the gain of the system in decibels (dB) versus frequency on a logarithmic scale, and the phase plot, which displays the phase shift in degrees versus frequency, also on a logarithmic scale. The magnitude is calculated using the formula:

Magnitude (dB)=20log⁡10∣H(jω)∣\text{Magnitude (dB)} = 20 \log_{10} \left| H(j\omega) \right|Magnitude (dB)=20log10​∣H(jω)∣

where H(jω)H(j\omega)H(jω) is the transfer function of the system evaluated at the complex frequency jωj\omegajω. The phase is calculated as:

Phase (degrees)=arg⁡(H(jω))\text{Phase (degrees)} = \arg(H(j\omega))Phase (degrees)=arg(H(jω))

Bode Plots are particularly useful for determining stability, bandwidth, and the resonance characteristics of the system. They allow engineers to intuitively understand how a system will respond to different frequencies and are essential in designing controllers and filters.

Silicon Carbide Power Electronics

Silicon Carbide (SiC) power electronics refer to electronic devices and components made from silicon carbide, a semiconductor material that offers superior performance compared to traditional silicon. SiC devices can operate at higher voltages, temperatures, and frequencies, making them ideal for applications in electric vehicles, renewable energy systems, and power conversion technologies. One of the key advantages of SiC is its wide bandgap, which allows for greater energy efficiency and reduced heat generation. This leads to smaller, lighter systems with improved reliability and lower cooling requirements. Additionally, SiC technology contributes to lower energy losses, resulting in significant cost savings over time in various industrial applications. The adoption of SiC power electronics is expected to accelerate as industries seek to enhance performance and sustainability.

Cryo-Em Structural Determination

Cryo-electron microscopy (Cryo-EM) is a powerful technique used for determining the three-dimensional structures of biological macromolecules at near-atomic resolution. This method involves rapidly freezing samples in a thin layer of vitreous ice, preserving their native state without the need for staining or fixation. Once frozen, a series of two-dimensional images are captured from different angles, which are then processed using advanced algorithms to reconstruct the 3D structure.

The main advantages of Cryo-EM include its ability to analyze large complexes and membrane proteins that are difficult to crystallize, along with the preservation of the biological context of the samples. Additionally, Cryo-EM has dramatically improved in resolution due to advancements in detector technology and image processing techniques, making it a cornerstone in structural biology and drug design.

Hedge Ratio

The hedge ratio is a critical concept in risk management and finance, representing the proportion of a position that is hedged to mitigate potential losses. It is defined as the ratio of the size of the hedging instrument to the size of the position being hedged. The hedge ratio can be calculated using the formula:

Hedge Ratio=Value of Hedge PositionValue of Underlying Position\text{Hedge Ratio} = \frac{\text{Value of Hedge Position}}{\text{Value of Underlying Position}}Hedge Ratio=Value of Underlying PositionValue of Hedge Position​

A hedge ratio of 1 indicates a perfect hedge, meaning that for every unit of the underlying asset, there is an equivalent unit of the hedging instrument. Conversely, a hedge ratio less than 1 suggests that only a portion of the position is hedged, while a ratio greater than 1 indicates an over-hedged position. Understanding the hedge ratio is essential for investors and companies to make informed decisions about risk exposure and to protect against adverse market movements.

Principal-Agent Model Risk Sharing

The Principal-Agent Model addresses the dynamics between a principal (e.g., an employer or investor) and an agent (e.g., a worker or manager) when both parties have different interests and information asymmetries. In this context, risk sharing becomes crucial as it determines how risks and rewards are allocated between the two parties. The principal often seeks to incentivize the agent to act in their best interest, which can lead to the design of contracts that align their goals. For example, the principal might offer a performance-based compensation structure, where the agent receives a base salary plus bonuses tied to specific outcomes. This setup aims to mitigate the agent's risk while ensuring that their interests are aligned with those of the principal, thereby reducing agency costs and improving overall efficiency. Ultimately, effective risk sharing fosters a cooperative relationship that enhances productivity and drives mutual benefits.

Reynolds Transport

Reynolds Transport Theorem (RTT) is a fundamental principle in fluid mechanics that provides a relationship between the rate of change of a physical quantity within a control volume and the flow of that quantity across the control surface. This theorem is essential for analyzing systems where fluids are in motion and changing properties. The RTT states that the rate of change of a property BBB within a control volume VVV can be expressed as:

ddt∫VB dV=∫V∂B∂t dV+∫SBv⋅n dS\frac{d}{dt} \int_{V} B \, dV = \int_{V} \frac{\partial B}{\partial t} \, dV + \int_{S} B \mathbf{v} \cdot \mathbf{n} \, dSdtd​∫V​BdV=∫V​∂t∂B​dV+∫S​Bv⋅ndS

where SSS is the control surface, v\mathbf{v}v is the velocity field, and n\mathbf{n}n is the outward normal vector on the surface. The first term on the right side accounts for the local change within the volume, while the second term represents the net flow of the property across the surface. This theorem allows for a systematic approach to analyze mass, momentum, and energy transport in various engineering applications, making it a cornerstone in the fields of fluid dynamics and thermodynamics.