StudentsEducators

Euler-Lagrange

The Euler-Lagrange equation is a fundamental equation in the calculus of variations that provides a method for finding the path or function that minimizes or maximizes a certain quantity, often referred to as the action. This equation is derived from the principle of least action, which states that the path taken by a system is the one for which the action integral is stationary. Mathematically, if we consider a functional J[y]J[y]J[y] defined as:

J[y]=∫abL(x,y,y′) dxJ[y] = \int_{a}^{b} L(x, y, y') \, dxJ[y]=∫ab​L(x,y,y′)dx

where LLL is the Lagrangian of the system, yyy is the function to be determined, and y′y'y′ is its derivative, the Euler-Lagrange equation is given by:

∂L∂y−ddx(∂L∂y′)=0\frac{\partial L}{\partial y} - \frac{d}{dx} \left( \frac{\partial L}{\partial y'} \right) = 0∂y∂L​−dxd​(∂y′∂L​)=0

This equation must hold for all functions y(x)y(x)y(x) that satisfy the boundary conditions. The Euler-Lagrange equation is widely used in various fields such as physics, engineering, and economics to solve problems involving dynamics, optimization, and control.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Fama-French

The Fama-French model is an asset pricing model introduced by Eugene Fama and Kenneth French in the early 1990s. It expands upon the traditional Capital Asset Pricing Model (CAPM) by incorporating size and value factors to explain stock returns better. The model is based on three key factors:

  1. Market Risk (Beta): This measures the sensitivity of a stock's returns to the overall market returns.
  2. Size (SMB): This is the "Small Minus Big" factor, representing the excess returns of small-cap stocks over large-cap stocks.
  3. Value (HML): This is the "High Minus Low" factor, capturing the excess returns of value stocks (those with high book-to-market ratios) over growth stocks (with low book-to-market ratios).

The Fama-French three-factor model can be represented mathematically as:

Ri=Rf+βi(Rm−Rf)+si⋅SMB+hi⋅HML+ϵiR_i = R_f + \beta_i (R_m - R_f) + s_i \cdot SMB + h_i \cdot HML + \epsilon_iRi​=Rf​+βi​(Rm​−Rf​)+si​⋅SMB+hi​⋅HML+ϵi​

where RiR_iRi​ is the expected return on asset iii, RfR_fRf​ is the risk-free rate, RmR_mRm​ is the return on the market portfolio, and ϵi\epsilon_iϵi​ is the error term. This model has been widely adopted in finance for asset management and portfolio evaluation due to its improved explanatory power over

Suffix Tree Ukkonen

The Ukkonen's algorithm is an efficient method for constructing a suffix tree for a given string in linear time, specifically O(n)O(n)O(n), where nnn is the length of the string. A suffix tree is a compressed trie that represents all the suffixes of a string, allowing for fast substring searches and various string processing tasks. Ukkonen's algorithm works incrementally by adding one character at a time and maintaining the tree in a way that allows for quick updates.

The key steps in Ukkonen's algorithm include:

  1. Implicit Suffix Tree Construction: Initially, an implicit suffix tree is built for the first few characters of the string.
  2. Extension: For each new character added, the algorithm extends the existing suffix tree by finding all the active points where the new character can be added.
  3. Suffix Links: These links allow the algorithm to efficiently navigate between the different states of the tree, ensuring that each extension is done in constant time.
  4. Finalization: After processing all characters, the implicit tree is converted into a proper suffix tree.

By utilizing these strategies, Ukkonen's algorithm achieves a remarkable efficiency that is crucial for applications in bioinformatics, data compression, and text processing.

Nash Equilibrium Mixed Strategy

A Nash Equilibrium Mixed Strategy occurs in game theory when players randomize their strategies in such a way that no player can benefit by unilaterally changing their strategy while the others keep theirs unchanged. In this equilibrium, each player's strategy is a probability distribution over possible actions, rather than a single deterministic choice. This is particularly relevant in games where pure strategies do not yield a stable outcome.

For example, consider a game where two players can choose either Strategy A or Strategy B. If neither player can predict the other’s choice, they may both choose to randomize their strategies, assigning probabilities ppp and 1−p1-p1−p to their actions. A mixed strategy Nash equilibrium exists when these probabilities are such that each player is indifferent between their possible actions, meaning the expected payoff from each action is equal. Mathematically, this can be expressed as:

E(A)=E(B)E(A) = E(B)E(A)=E(B)

where E(A)E(A)E(A) and E(B)E(B)E(B) are the expected payoffs for each strategy.

Minimax Search Algorithm

The Minimax Search Algorithm is a decision-making algorithm used primarily in two-player games, such as chess or tic-tac-toe. Its purpose is to minimize the possible loss for a worst-case scenario while maximizing the potential gain. The algorithm works by constructing a game tree where each node represents a game state, and it alternates between minimizing and maximizing layers, depending on whose turn it is.

In essence, the player (maximizer) aims to choose the move that provides the maximum possible score, while the opponent (minimizer) aims to select moves that minimize the player's score. The algorithm evaluates the game states at the leaf nodes of the tree and propagates these values upward, ultimately leading to the decision that results in the optimal strategy for the player. The Minimax algorithm can be implemented recursively and often incorporates techniques such as alpha-beta pruning to enhance efficiency by eliminating branches that do not need to be evaluated.

Schottky Barrier Diode

The Schottky Barrier Diode is a semiconductor device that is formed by the junction of a metal and a semiconductor, typically n-type silicon. Unlike traditional p-n junction diodes, which have a wide depletion region, the Schottky diode features a much thinner barrier, resulting in faster switching times and lower forward voltage drop. The Schottky barrier is created at the interface between the metal and the semiconductor, allowing for efficient electron flow, which makes it ideal for high-frequency applications and power rectification.

One of the key characteristics of Schottky diodes is their low reverse recovery time, which makes them suitable for use in circuits where rapid switching is required. Additionally, they exhibit a current-voltage relationship defined by the equation:

I=Is(eqVkT−1)I = I_s \left( e^{\frac{qV}{kT}} - 1 \right)I=Is​(ekTqV​−1)

where III is the current, IsI_sIs​ is the saturation current, qqq is the charge of an electron, VVV is the voltage across the diode, kkk is Boltzmann's constant, and TTT is the absolute temperature in Kelvin. This unique structure and performance make Schottky diodes essential components in modern electronics, particularly in power supplies and RF applications.

Baire Theorem

The Baire Theorem is a fundamental result in topology and analysis, particularly concerning complete metric spaces. It states that in any complete metric space, the intersection of countably many dense open sets is dense. This means that if you have a complete metric space and a series of open sets that are dense in that space, their intersection will also have the property of being dense.

In more formal terms, if XXX is a complete metric space and A1,A2,A3,…A_1, A_2, A_3, \ldotsA1​,A2​,A3​,… are dense open subsets of XXX, then the intersection

⋂n=1∞An\bigcap_{n=1}^{\infty} A_nn=1⋂∞​An​

is also dense in XXX. This theorem has important implications in various areas of mathematics, including analysis and the study of function spaces, as it assures the existence of points common to multiple dense sets under the condition of completeness.