StudentsEducators

Feynman Propagator

The Feynman propagator is a fundamental concept in quantum field theory, representing the amplitude for a particle to travel from one point to another in spacetime. Mathematically, it is denoted as G(x,y)G(x, y)G(x,y), where xxx and yyy are points in spacetime. The propagator can be expressed as an integral over all possible paths that a particle might take, weighted by the exponential of the action, which encapsulates the dynamics of the system.

In more technical terms, the Feynman propagator is defined as:

G(x,y)=⟨0∣T{ϕ(x)ϕ(y)}∣0⟩G(x, y) = \langle 0 | T \{ \phi(x) \phi(y) \} | 0 \rangleG(x,y)=⟨0∣T{ϕ(x)ϕ(y)}∣0⟩

where TTT denotes time-ordering, ϕ(x)\phi(x)ϕ(x) is the field operator, and ∣0⟩| 0 \rangle∣0⟩ represents the vacuum state. It serves not only as a tool for calculating particle interactions in Feynman diagrams but also provides insights into the causality and structure of quantum field theories. Understanding the Feynman propagator is crucial for grasping how particles interact and propagate in a quantum mechanical framework.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Silicon Carbide Power Electronics

Silicon Carbide (SiC) power electronics refer to electronic devices and components made from silicon carbide, a semiconductor material that offers superior performance compared to traditional silicon. SiC devices can operate at higher voltages, temperatures, and frequencies, making them ideal for applications in electric vehicles, renewable energy systems, and power conversion technologies. One of the key advantages of SiC is its wide bandgap, which allows for greater energy efficiency and reduced heat generation. This leads to smaller, lighter systems with improved reliability and lower cooling requirements. Additionally, SiC technology contributes to lower energy losses, resulting in significant cost savings over time in various industrial applications. The adoption of SiC power electronics is expected to accelerate as industries seek to enhance performance and sustainability.

Prospect Theory Reference Points

Prospect Theory, developed by Daniel Kahneman and Amos Tversky, introduces the concept of reference points to explain how individuals evaluate potential gains and losses. A reference point is essentially a baseline or a status quo that people use to judge outcomes; they perceive outcomes as gains or losses relative to this point rather than in absolute terms. For instance, if an investor expects a return of 5% on an investment and receives 7%, they perceive this as a gain of 2%. Conversely, if they receive only 3%, it is viewed as a loss of 2%. This leads to the principle of loss aversion, where losses are felt more intensely than equivalent gains, often described by the ratio of approximately 2:1. Thus, the reference point significantly influences decision-making processes, as people tend to be risk-averse in the domain of gains and risk-seeking in the domain of losses.

Dijkstra Vs Bellman-Ford

Dijkstra's algorithm and the Bellman-Ford algorithm are both used for finding the shortest paths in a graph, but they have distinct characteristics and use cases. Dijkstra's algorithm is more efficient for graphs with non-negative weights, operating with a time complexity of O((V+E)log⁡V)O((V + E) \log V)O((V+E)logV) using a priority queue, where VVV is the number of vertices and EEE is the number of edges. In contrast, the Bellman-Ford algorithm can handle graphs with negative weight edges and has a time complexity of O(V⋅E)O(V \cdot E)O(V⋅E). However, it is less efficient than Dijkstra's algorithm for graphs without negative weights. Importantly, while Dijkstra's algorithm cannot detect negative weight cycles, the Bellman-Ford algorithm can identify them, making it a more versatile choice in certain scenarios. Both algorithms play crucial roles in network routing and optimization problems, but selecting the appropriate one depends on the specific properties of the graph involved.

Neutrino Oscillation Experiments

Neutrino oscillation experiments are designed to study the phenomenon where neutrinos change their flavor as they travel through space. This behavior arises from the fact that neutrinos are produced in specific flavors (electron, muon, or tau) but can transform into one another due to quantum mechanical effects. The theoretical foundation for this oscillation is rooted in the mixing of different neutrino mass states, which can be described mathematically by the mixing angles and mass-squared differences.

The key equation governing these oscillations is given by:

P(να→νβ)=sin⁡2(Δm312L4E)P(\nu_\alpha \to \nu_\beta) = \sin^2\left(\frac{\Delta m^2_{31} L}{4E}\right) P(να​→νβ​)=sin2(4EΔm312​L​)

where P(να→νβ)P(\nu_\alpha \to \nu_\beta)P(να​→νβ​) is the probability of a neutrino of flavor α\alphaα oscillating into flavor β\betaβ, Δm312\Delta m^2_{31}Δm312​ is the difference in the squares of the masses of the neutrino states, LLL is the distance traveled, and EEE is the neutrino energy. These experiments have significant implications for our understanding of particle physics and the Standard Model, as they provide evidence for the existence of neutrino mass, which was previously believed to be zero.

Fermi Golden Rule Applications

The Fermi Golden Rule is a fundamental principle in quantum mechanics, primarily used to calculate transition rates between quantum states. It is particularly applicable in scenarios involving perturbations, such as interactions with external fields or other particles. The rule states that the transition rate WWW from an initial state ∣i⟩| i \rangle∣i⟩ to a final state ∣f⟩| f \rangle∣f⟩ is given by:

Wif=2πℏ∣⟨f∣H′∣i⟩∣2ρ(Ef)W_{if} = \frac{2\pi}{\hbar} | \langle f | H' | i \rangle |^2 \rho(E_f)Wif​=ℏ2π​∣⟨f∣H′∣i⟩∣2ρ(Ef​)

where H′H'H′ is the perturbing Hamiltonian, and ρ(Ef)\rho(E_f)ρ(Ef​) is the density of final states at the energy EfE_fEf​. This formula has numerous applications, including nuclear decay processes, photoelectric effects, and scattering theory. By employing the Fermi Golden Rule, physicists can effectively predict the likelihood of transitions and interactions, thus enhancing our understanding of various quantum phenomena.

Fano Resonance

Fano Resonance is a phenomenon observed in quantum mechanics and condensed matter physics, characterized by the interference between a discrete quantum state and a continuum of states. This interference results in an asymmetric line shape in the absorption or scattering spectra, which is distinct from the typical Lorentzian profile. The Fano effect can be described mathematically using the Fano parameter qqq, which quantifies the relative strength of the discrete state to the continuum. As the parameter qqq varies, the shape of the resonance changes from a symmetric peak to an asymmetric one, often displaying a dip and a peak near the resonance energy. This phenomenon has important implications in various fields, including optics, solid-state physics, and nanotechnology, where it can be utilized to design advanced optical devices or sensors.