StudentsEducators

Price Stickiness

Price stickiness refers to the phenomenon where prices of goods and services are slow to change in response to shifts in supply and demand. This can occur for several reasons, including menu costs, which are the costs associated with changing prices, and contractual obligations, where businesses are locked into fixed pricing agreements. As a result, even when economic conditions fluctuate, prices may remain stable, leading to inefficiencies in the market. For instance, during a recession, firms may be reluctant to lower prices due to fear of losing perceived value, while during an economic boom, they may be hesitant to raise prices for fear of losing customers. This rigidity can contribute to prolonged periods of economic imbalance, as resources are not allocated optimally. Understanding price stickiness is crucial for policymakers, as it affects inflation rates and overall economic stability.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Wkb Approximation

The WKB (Wentzel-Kramers-Brillouin) approximation is a semi-classical method used in quantum mechanics to find approximate solutions to the Schrödinger equation. This technique is particularly useful in scenarios where the potential varies slowly compared to the wavelength of the quantum particles involved. The method employs a classical trajectory approach, allowing us to express the wave function as an exponential function of a rapidly varying phase, typically represented as:

ψ(x)∼eiℏS(x)\psi(x) \sim e^{\frac{i}{\hbar} S(x)}ψ(x)∼eℏi​S(x)

where S(x)S(x)S(x) is the classical action. The WKB approximation is effective in regions where the potential is smooth, enabling one to apply classical mechanics principles while still accounting for quantum effects. This approach is widely utilized in various fields, including quantum mechanics, optics, and even in certain branches of classical physics, to analyze tunneling phenomena and bound states in potential wells.

Sierpinski Triangle

The Sierpinski Triangle is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. It is created by repeatedly removing the upside-down triangle from the center of a larger triangle. The process begins with a solid triangle, and in each iteration, the middle triangle of every remaining triangle is removed. This results in a pattern that exhibits self-similarity, meaning that each smaller triangle looks like the original triangle.

Mathematically, the number of triangles increases exponentially with each iteration, following the formula Tn=3nT_n = 3^nTn​=3n, where TnT_nTn​ is the number of triangles at iteration nnn. The Sierpinski Triangle is not only a fascinating geometric figure but also illustrates important concepts in chaos theory and the mathematical notion of infinity.

Genetic Engineering Techniques

Genetic engineering techniques involve the manipulation of an organism's DNA to achieve desired traits or functions. These techniques can be broadly categorized into several methods, including CRISPR-Cas9, which allows for precise editing of specific genes, and gene cloning, where a gene of interest is copied and inserted into a vector for further study or application. Transgenic technology enables the introduction of foreign genes into an organism, resulting in genetically modified organisms (GMOs) that can exhibit beneficial traits such as pest resistance or enhanced nutritional value. Additionally, techniques like gene therapy aim to treat or prevent diseases by correcting defective genes responsible for illness. Overall, genetic engineering holds significant potential for advancements in medicine, agriculture, and biotechnology, but it also raises ethical considerations regarding the manipulation of life forms.

Granger Causality

Granger Causality is a statistical hypothesis test for determining whether one time series can predict another. It is based on the premise that if variable XXX Granger-causes variable YYY, then past values of XXX should provide statistically significant information about future values of YYY, beyond what is contained in past values of YYY alone. This relationship can be assessed using regression analysis, where the lagged values of both variables are included in the model.

The basic steps involved are:

  1. Estimate a model with the lagged values of YYY to predict YYY itself.
  2. Estimate a second model that includes both the lagged values of YYY and the lagged values of XXX.
  3. Compare the two models using an F-test to determine if the inclusion of XXX significantly improves the prediction of YYY.

It is important to note that Granger causality does not imply true causality; it only indicates a predictive relationship based on temporal precedence.

Phillips Phase

The Phillips Phase refers to a concept in economics that illustrates the relationship between unemployment and inflation, originally formulated by economist A.W. Phillips in 1958. Phillips observed an inverse relationship, suggesting that lower unemployment rates correlate with higher inflation rates. This relationship is often depicted using the Phillips Curve, which can be expressed mathematically as π=πe−β(u−un)\pi = \pi^e - \beta (u - u_n)π=πe−β(u−un​), where π\piπ is the rate of inflation, πe\pi^eπe is the expected inflation, uuu is the unemployment rate, unu_nun​ is the natural rate of unemployment, and β\betaβ is a positive constant. Over time, however, economists have noted that this relationship may not hold in the long run, particularly during periods of stagflation, where high inflation and high unemployment occur simultaneously. Thus, the Phillips Phase highlights the complexities of economic policy and the need for careful consideration of the trade-offs between inflation and unemployment.

Adaptive Expectations

Adaptive expectations is an economic theory that suggests individuals form their expectations about future events based on past experiences and observations. In this framework, people's expectations are updated gradually as new information becomes available, rather than being based on a static model or rational calculations. For example, if inflation rates have been rising, individuals may predict that future inflation will also increase, adjusting their expectations in response to the observed trend. This approach is often formalized mathematically by the equation:

Et=Et−1+α(Yt−Et−1)E_t = E_{t-1} + \alpha (Y_t - E_{t-1})Et​=Et−1​+α(Yt​−Et−1​)

where EtE_tEt​ is the expected value at time ttt, YtY_tYt​ is the actual value observed at time ttt, and α\alphaα is a parameter that determines how quickly expectations adjust. The implications of adaptive expectations are significant in various economic models, particularly in understanding how markets react to changes in economic policy or external shocks.