StudentsEducators

Financial Derivatives Pricing

Financial derivatives pricing refers to the process of determining the fair value of financial instruments whose value is derived from the performance of underlying assets, such as stocks, bonds, or commodities. The pricing of these derivatives, including options, futures, and swaps, is often based on models that account for various factors, such as the time to expiration, volatility of the underlying asset, and interest rates. One widely used method is the Black-Scholes model, which provides a mathematical framework for pricing European options. The formula is given by:

C=S0N(d1)−Xe−rTN(d2)C = S_0 N(d_1) - X e^{-rT} N(d_2)C=S0​N(d1​)−Xe−rTN(d2​)

where CCC is the call option price, S0S_0S0​ is the current stock price, XXX is the strike price, rrr is the risk-free interest rate, TTT is the time until expiration, and N(d)N(d)N(d) is the cumulative distribution function of the standard normal distribution. Understanding these pricing models is crucial for traders and risk managers as they help in making informed decisions and managing financial risk effectively.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Avl Trees

AVL Trees, named after their inventors Adelson-Velsky and Landis, are a type of self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one, ensuring that the tree remains balanced. This balance is maintained through rotations during insertions and deletions, which allows for efficient search, insertion, and deletion operations with a time complexity of O(log⁡n)O(\log n)O(logn). The balancing condition can be expressed using the balance factor, defined for any node as the height of the left subtree minus the height of the right subtree. If the balance factor of any node becomes less than -1 or greater than 1, rebalancing through rotations is necessary to restore the AVL property. This makes AVL trees particularly suitable for applications that require frequent insertions and deletions while maintaining quick access times.

Control Systems

Control systems are essential frameworks that manage, command, direct, or regulate the behavior of other devices or systems. They can be classified into two main types: open-loop and closed-loop systems. An open-loop system acts without feedback, meaning it executes commands without considering the output, while a closed-loop system incorporates feedback to adjust its operation based on the output performance.

Key components of control systems include sensors, controllers, and actuators, which work together to achieve desired performance. For example, in a temperature control system, a sensor measures the current temperature, a controller compares it to the desired temperature setpoint, and an actuator adjusts the heating or cooling to minimize the difference. The stability and performance of these systems can often be analyzed using mathematical models represented by differential equations or transfer functions.

Lagrange Multipliers

Lagrange Multipliers is a mathematical method used to find the local maxima and minima of a function subject to equality constraints. It operates on the principle that if you want to optimize a function f(x,y)f(x, y)f(x,y) while adhering to a constraint g(x,y)=0g(x, y) = 0g(x,y)=0, you can introduce a new variable, known as the Lagrange multiplier λ\lambdaλ. The method involves setting up the Lagrangian function:

L(x,y,λ)=f(x,y)+λg(x,y)\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y)L(x,y,λ)=f(x,y)+λg(x,y)

To find the extrema, you take the partial derivatives of L\mathcal{L}L with respect to xxx, yyy, and λ\lambdaλ, and set them equal to zero:

∂L∂x=0,∂L∂y=0,∂L∂λ=0\frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0∂x∂L​=0,∂y∂L​=0,∂λ∂L​=0

This results in a system of equations that can be solved to determine the optimal values of xxx, yyy, and λ\lambdaλ. This method is especially useful in various fields such as economics, engineering, and physics, where constraints are a common factor in optimization problems.

Three-Phase Rectifier

A three-phase rectifier is an electrical device that converts three-phase alternating current (AC) into direct current (DC). This type of rectifier utilizes multiple diodes (typically six) to effectively manage the conversion process, allowing it to take advantage of the continuous power flow inherent in three-phase systems. The main benefits of a three-phase rectifier include improved efficiency, reduced ripple voltage, and enhanced output stability compared to single-phase rectifiers.

In a three-phase rectifier circuit, the output voltage can be calculated using the formula:

VDC=33πVLV_{DC} = \frac{3 \sqrt{3}}{\pi} V_{L}VDC​=π33​​VL​

where VLV_{L}VL​ is the line-to-line voltage of the AC supply. This characteristic makes three-phase rectifiers particularly suitable for industrial applications where high power and reliability are essential.

Van Leer Flux Limiter

The Van Leer Flux Limiter is a numerical technique used in computational fluid dynamics, particularly for solving hyperbolic partial differential equations. It is designed to maintain the conservation properties of the numerical scheme while preventing non-physical oscillations, especially in regions with steep gradients or discontinuities. The method operates by limiting the fluxes at the interfaces between computational cells, ensuring that the solution remains bounded and stable.

The flux limiter is defined as a function that modifies the numerical flux based on the local flow characteristics. Specifically, it uses the ratio of the differences in neighboring cell values to determine whether to apply a linear or non-linear interpolation scheme. This can be expressed mathematically as:

ϕ={1,if Δq>0ΔqΔq+Δqnext,if Δq≤0\phi = \begin{cases} 1, & \text{if } \Delta q > 0 \\ \frac{\Delta q}{\Delta q + \Delta q_{\text{next}}}, & \text{if } \Delta q \leq 0 \end{cases}ϕ={1,Δq+Δqnext​Δq​,​if Δq>0if Δq≤0​

where Δq\Delta qΔq represents the differences in the conserved quantities across cells. By effectively balancing accuracy and stability, the Van Leer Flux Limiter helps to produce more reliable simulations of fluid flow phenomena.

Cooper Pair Breaking

Cooper pair breaking refers to the phenomenon in superconductors where the bound pairs of electrons, known as Cooper pairs, are disrupted due to thermal or external influences. In a superconductor, these pairs form at low temperatures, allowing for zero electrical resistance. However, when the temperature rises or when an external magnetic field is applied, the energy can become sufficient to break these pairs apart.

This process can be quantitatively described using the concept of the Bardeen-Cooper-Schrieffer (BCS) theory, which explains superconductivity in terms of these pairs. The breaking of Cooper pairs results in a finite resistance in the material, transitioning it from a superconducting state to a normal conducting state. Additionally, the energy required to break a Cooper pair can be expressed as a critical temperature TcT_cTc​ above which superconductivity ceases.

In summary, Cooper pair breaking is a key factor in understanding the limits of superconductivity and the conditions under which superconductors can operate effectively.