AVL Trees, named after their inventors Adelson-Velsky and Landis, are a type of self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one, ensuring that the tree remains balanced. This balance is maintained through rotations during insertions and deletions, which allows for efficient search, insertion, and deletion operations with a time complexity of . The balancing condition can be expressed using the balance factor, defined for any node as the height of the left subtree minus the height of the right subtree. If the balance factor of any node becomes less than -1 or greater than 1, rebalancing through rotations is necessary to restore the AVL property. This makes AVL trees particularly suitable for applications that require frequent insertions and deletions while maintaining quick access times.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.