StudentsEducators

Fourier Series

A Fourier series is a way to represent a function as a sum of sine and cosine functions. This representation is particularly useful for periodic functions, allowing them to be expressed in terms of their frequency components. The basic idea is that any periodic function f(x)f(x)f(x) can be written as:

f(x)=a0+∑n=1∞(ancos⁡(2πnxT)+bnsin⁡(2πnxT))f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right) \right)f(x)=a0​+n=1∑∞​(an​cos(T2πnx​)+bn​sin(T2πnx​))

where TTT is the period of the function, and ana_nan​ and bnb_nbn​ are the Fourier coefficients calculated using the following formulas:

an=1T∫0Tf(x)cos⁡(2πnxT)dxa_n = \frac{1}{T} \int_{0}^{T} f(x) \cos\left(\frac{2\pi nx}{T}\right) dxan​=T1​∫0T​f(x)cos(T2πnx​)dx bn=1T∫0Tf(x)sin⁡(2πnxT)dxb_n = \frac{1}{T} \int_{0}^{T} f(x) \sin\left(\frac{2\pi nx}{T}\right) dxbn​=T1​∫0T​f(x)sin(T2πnx​)dx

Fourier series play a crucial role in various fields, including signal processing, heat transfer, and acoustics, as they provide a powerful method for analyzing and synthesizing periodic signals. By breaking down complex waveforms into simpler sinusoidal components, they enable

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Boyer-Moore

The Boyer-Moore algorithm is a highly efficient string-searching algorithm that is used to find a substring (the pattern) within a larger string (the text). It operates by utilizing two heuristics: the bad character rule and the good suffix rule. The bad character rule allows the algorithm to skip sections of the text when a mismatch occurs, by shifting the pattern to align with the last occurrence of the mismatched character in the pattern. The good suffix rule enhances this by shifting the pattern based on the matched suffix, allowing it to skip even more text.

The algorithm is particularly effective for large texts and patterns, with an average-case time complexity of O(n/m)O(n/m)O(n/m), where nnn is the length of the text and mmm is the length of the pattern. This makes Boyer-Moore significantly faster than simpler algorithms like the naive search, especially when the alphabet size is large or the pattern is relatively short compared to the text. Overall, its combination of heuristics allows for substantial reductions in the number of character comparisons needed during the search process.

Vacuum Nanoelectronics Applications

Vacuum nanoelectronics refers to the use of vacuum as a medium for electronic devices at the nanoscale, leveraging the unique properties of electrons traveling through a vacuum. This technology enables high-speed and low-power electronic components due to the absence of scattering events that typically occur in solid materials. Key applications include:

  • Vacuum Tubes: Modern vacuum tubes, such as field emission displays (FEDs) and vacuum nano-transistors, can achieve higher performance compared to traditional semiconductor devices.
  • Quantum Computing: Vacuum nanoelectronics plays a role in developing qubits that can operate with reduced decoherence, increasing the efficiency of quantum operations.
  • Energy Harvesting: Devices utilizing thermionic emission can convert heat into electrical energy, contributing to energy sustainability.

Overall, vacuum nanoelectronics holds promise for revolutionizing various fields, including telecommunications, computing, and energy systems, by providing faster and more efficient solutions.

Endogenous Money Theory Post-Keynesian

Endogenous Money Theory (EMT) within the Post-Keynesian framework posits that the supply of money is determined by the demand for loans rather than being fixed by the central bank. This theory challenges the traditional view of money supply as exogenous, emphasizing that banks create money through lending when they extend credit to borrowers. As firms and households seek financing for investment and consumption, banks respond by generating deposits, effectively increasing the money supply.

In this context, the relationship can be summarized as follows:

  • Demand for loans drives money creation: When businesses want to invest, they approach banks for loans, prompting banks to create money.
  • Interest rates are influenced by the supply and demand for credit, rather than being solely controlled by central bank policies.
  • The role of the central bank is to ensure liquidity in the system and manage interest rates, but it does not directly control the total amount of money in circulation.

This understanding of money emphasizes the dynamic interplay between financial institutions and the economy, showcasing how monetary phenomena are deeply rooted in real economic activities.

Hopcroft-Karp

The Hopcroft-Karp algorithm is a highly efficient method used for finding a maximum matching in a bipartite graph. A bipartite graph consists of two disjoint sets of vertices, where edges only connect vertices from different sets. The algorithm operates in two main phases: broadening and augmenting. During the broadening phase, it performs a breadth-first search (BFS) to identify the shortest augmenting paths, while the augmenting phase uses these paths to increase the size of the matching. The runtime of the Hopcroft-Karp algorithm is O(EV)O(E \sqrt{V})O(EV​), where EEE is the number of edges and VVV is the number of vertices in the graph, making it significantly faster than earlier methods for large graphs. This efficiency is particularly beneficial in applications such as job assignments, network flow problems, and various scheduling tasks.

Solid-State Battery Design

Solid-state battery design refers to the development of batteries that utilize solid electrolytes instead of the liquid or gel electrolytes found in traditional lithium-ion batteries. This innovative approach enhances safety by minimizing the risks of leakage and flammability associated with liquid electrolytes. In solid-state batteries, materials such as ceramics or polymers are used to create a solid electrolyte, which allows for higher energy densities and improved performance at various temperatures. Additionally, the solid-state design can support the use of lithium metal anodes, which further increases the battery's capacity. Overall, solid-state battery technology is seen as a promising solution for advancing energy storage in applications ranging from electric vehicles to portable electronics.

Casimir Force Measurement

The Casimir force is a quantum phenomenon that arises from the vacuum fluctuations of electromagnetic fields between two closely spaced conducting plates. When these plates are brought within a few nanometers of each other, they experience an attractive force due to the restricted modes of the vacuum fluctuations between them. This force can be quantitatively measured using precise experimental setups that often involve atomic force microscopy (AFM) or microelectromechanical systems (MEMS).

To conduct a Casimir force measurement, the distance between the plates must be controlled with extreme accuracy, typically in the range of tens of nanometers. The force FFF can be derived from the Casimir energy EEE between the plates, given by the relation:

F=−dEdxF = -\frac{dE}{dx}F=−dxdE​

where xxx is the separation distance. Understanding and measuring the Casimir force has implications for nanotechnology, quantum field theory, and the fundamental principles of physics.