Geometric Deep Learning is a paradigm that extends traditional deep learning methods to non-Euclidean data structures such as graphs and manifolds. Unlike standard neural networks that operate on grid-like structures (e.g., images), geometric deep learning focuses on learning representations from data that have complex geometries and topologies. This is particularly useful in applications where relationships between data points are more important than their individual features, such as in social networks, molecular structures, and 3D shapes.
Key techniques in geometric deep learning include Graph Neural Networks (GNNs), which generalize convolutional neural networks (CNNs) to graph data, and Geometric Deep Learning Frameworks, which provide tools for processing and analyzing data with geometric structures. The underlying principle is to leverage the geometric properties of the data to improve model performance, enabling the extraction of meaningful patterns and insights while preserving the inherent structure of the data.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.