StudentsEducators

Photonic Crystal Modes

Photonic crystal modes refer to the specific patterns of electromagnetic waves that can propagate through photonic crystals, which are optical materials structured at the wavelength scale. These materials possess a periodic structure that creates a photonic band gap, preventing certain wavelengths of light from propagating through the crystal. This phenomenon is analogous to how semiconductors control electron flow, enabling the design of optical devices such as waveguides, filters, and lasers.

The modes can be classified into two major categories: guided modes, which are confined within the structure, and radiative modes, which can radiate away from the crystal. The behavior of these modes can be described mathematically using Maxwell's equations, leading to solutions that reveal the allowed frequencies of oscillation. The dispersion relation, often denoted as ω(k)\omega(k)ω(k), illustrates how the frequency ω\omegaω of these modes varies with the wavevector kkk, providing insights into the propagation characteristics of light within the crystal.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hermite Polynomial

Hermite polynomials are a set of orthogonal polynomials that arise in probability, combinatorics, and physics, particularly in the context of quantum mechanics and the solution of differential equations. They are defined by the recurrence relation:

Hn(x)=2xHn−1(x)−2(n−1)Hn−2(x)H_n(x) = 2xH_{n-1}(x) - 2(n-1)H_{n-2}(x)Hn​(x)=2xHn−1​(x)−2(n−1)Hn−2​(x)

with the initial conditions H0(x)=1H_0(x) = 1H0​(x)=1 and H1(x)=2xH_1(x) = 2xH1​(x)=2x. The nnn-th Hermite polynomial can also be expressed in terms of the exponential function and is given by:

Hn(x)=(−1)nex2/2dndxne−x2/2H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}Hn​(x)=(−1)nex2/2dxndn​e−x2/2

These polynomials are orthogonal with respect to the weight function w(x)=e−x2w(x) = e^{-x^2}w(x)=e−x2 on the interval (−∞,∞)(- \infty, \infty)(−∞,∞), meaning that:

∫−∞∞Hm(x)Hn(x)e−x2 dx=0for m≠n\int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2} \, dx = 0 \quad \text{for } m \neq n∫−∞∞​Hm​(x)Hn​(x)e−x2dx=0for m=n

Hermite polynomials play a crucial role in the formulation of the quantum harmonic oscillator and in the study of Gaussian integrals, making them significant in both theoretical and applied

Kleinberg’S Small-World Model

Kleinberg’s Small-World Model, introduced by Jon Kleinberg in 2000, explores the phenomenon of small-world networks, which are characterized by short average path lengths despite a large number of nodes. The model is based on a grid structure where nodes are arranged in a two-dimensional lattice, and links are established both to nearest neighbors and to distant nodes with a specific probability. This creates a network where most nodes can be reached from any other node in just a few steps, embodying the concept of "six degrees of separation."

The key feature of this model is the introduction of rewiring, where edges are redirected to connect to distant nodes rather than remaining only with local neighbors. This process is governed by a parameter ppp, which controls the likelihood of connecting to a distant node. As ppp increases, the network transitions from a regular lattice to a small-world structure, enhancing connectivity dramatically while maintaining local clustering. Kleinberg's work illustrates how small-world phenomena arise naturally in various social, biological, and technological networks, highlighting the interplay between local and long-range connections.

Tandem Repeat Expansion

Tandem Repeat Expansion refers to a genetic phenomenon where a sequence of DNA, consisting of repeated units, increases in number over generations. These repeated units, known as tandem repeats, can vary in length and may consist of 2-6 base pairs. When mutations occur during DNA replication, the number of these repeats can expand, leading to longer stretches of the repeated sequence. This expansion is often associated with various genetic disorders, such as Huntington's disease and certain forms of muscular dystrophy. The mechanism behind this phenomenon involves slippage during DNA replication, which can cause the DNA polymerase enzyme to misalign and add extra repeats, resulting in an unstable repeat region. Such expansions can disrupt normal gene function, contributing to the pathogenesis of these diseases.

Chandrasekhar Limit

The Chandrasekhar Limit is a fundamental concept in astrophysics, named after the Indian astrophysicist Subrahmanyan Chandrasekhar, who first calculated it in the 1930s. This limit defines the maximum mass of a stable white dwarf star, which is approximately 1.4 times the mass of the Sun (M⊙M_{\odot}M⊙​). Beyond this mass, a white dwarf cannot support itself against gravitational collapse due to electron degeneracy pressure, leading to a potential collapse into a neutron star or even a black hole. The equation governing this limit involves the balance between gravitational forces and quantum mechanical effects, primarily described by the principles of quantum mechanics and relativity. When the mass exceeds the Chandrasekhar Limit, the star undergoes catastrophic changes, often resulting in a supernova explosion or the formation of more compact stellar remnants. Understanding this limit is essential for studying the life cycles of stars and the evolution of the universe.

Lipidomics Analysis

Lipidomics analysis is the comprehensive study of the lipid profiles within biological systems, aiming to understand the roles and functions of lipids in health and disease. This field employs advanced analytical techniques, such as mass spectrometry and chromatography, to identify and quantify various lipid species, including triglycerides, phospholipids, and sphingolipids. By examining lipid metabolism and signaling pathways, researchers can uncover important insights into cellular processes and their implications for diseases such as cancer, obesity, and cardiovascular disorders.

Key aspects of lipidomics include:

  • Sample Preparation: Proper extraction and purification of lipids from biological samples.
  • Analytical Techniques: Utilizing high-resolution mass spectrometry for accurate identification and quantification.
  • Data Analysis: Implementing bioinformatics tools to interpret complex lipidomic data and draw meaningful biological conclusions.

Overall, lipidomics is a vital component of systems biology, contributing to our understanding of how lipids influence physiological and pathological states.

Gauge Invariance

Gauge Invariance ist ein fundamentales Konzept in der theoretischen Physik, insbesondere in der Quantenfeldtheorie und der allgemeinen Relativitätstheorie. Es beschreibt die Eigenschaft eines physikalischen Systems, dass die physikalischen Gesetze unabhängig von der Wahl der lokalen Symmetrie oder Koordinaten sind. Dies bedeutet, dass bestimmte Transformationen, die man auf die Felder oder Koordinaten anwendet, keine messbaren Auswirkungen auf die physikalischen Ergebnisse haben.

Ein Beispiel ist die elektromagnetische Wechselwirkung, die unter der Gauge-Transformation ψ→eiα(x)ψ\psi \rightarrow e^{i\alpha(x)}\psiψ→eiα(x)ψ invariant bleibt, wobei α(x)\alpha(x)α(x) eine beliebige Funktion ist. Diese Invarianz ist entscheidend für die Erhaltung von physikalischen Größen wie Energie und Impuls und führt zur Einführung von Wechselwirkungen in den entsprechenden Theorien. Invarianz gegenüber solchen Transformationen ist nicht nur eine mathematische Formalität, sondern hat tiefgreifende physikalische Konsequenzen, die zur Beschreibung der fundamentalen Kräfte in der Natur führen.