Gravitational wave detection refers to the process of identifying the ripples in spacetime caused by massive accelerating objects, such as merging black holes or neutron stars. These waves were first predicted by Albert Einstein in 1916 as part of his General Theory of Relativity. The most notable detection method relies on laser interferometry, as employed by facilities like LIGO (Laser Interferometer Gravitational-Wave Observatory). In this method, two long arms, which are perpendicular to each other, measure the incredibly small changes in distance (on the order of one-thousandth the diameter of a proton) caused by passing gravitational waves.
The fundamental equation governing these waves can be expressed as:
where is the strain (the fractional change in length), is the change in length, and is the original length of the interferometer arms. When gravitational waves pass through the detector, they stretch and compress space, leading to detectable variations in the distances measured by the interferometer. The successful detection of these waves opens a new window into the universe, enabling scientists to observe astronomical events that were previously invisible to traditional telescopes.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.