Hadronization is a crucial process in Quantum Chromodynamics (QCD), the theory that describes the strong interaction between quarks and gluons. When high-energy collisions produce quarks and gluons, these particles cannot exist freely due to confinement; instead, they must combine to form hadrons, which are composite particles made of quarks. The process of hadronization involves the transformation of these partons (quarks and gluons) into color-neutral hadrons, such as protons, neutrons, and pions.
One key aspect of hadronization is the concept of coalescence, where quarks combine to form hadrons, and fragmentation, where a high-energy parton emits softer particles that also combine to create hadrons. The dynamics of this process are complex and are typically modeled using techniques like the Lund string model or the cluster model. Ultimately, hadronization is essential for connecting the fundamental interactions described by QCD with the observable properties of hadrons in experiments.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.