StudentsEducators

Hamming Bound

The Hamming Bound is a fundamental concept in coding theory that establishes a limit on the number of codewords in a block code, given its parameters. It states that for a code of length nnn that can correct up to ttt errors, the total number of distinct codewords must satisfy the inequality:

M⋅∑i=0t(ni)≤2nM \cdot \sum_{i=0}^{t} \binom{n}{i} \leq 2^nM⋅i=0∑t​(in​)≤2n

where MMM is the number of codewords in the code, and (ni)\binom{n}{i}(in​) is the binomial coefficient representing the number of ways to choose iii positions from nnn. This bound ensures that the spheres of influence (or spheres of radius ttt) for each codeword do not overlap, maintaining unique decodability. If a code meets this bound, it is said to achieve the Hamming Bound, indicating that it is optimal in terms of error correction capability for the given parameters.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Plasmonic Metamaterials

Plasmonic metamaterials are artificially engineered materials that exhibit unique optical properties due to their structure, rather than their composition. They manipulate light at the nanoscale by exploiting surface plasmon resonances, which are coherent oscillations of free electrons at the interface between a metal and a dielectric. These metamaterials can achieve phenomena such as negative refraction, superlensing, and cloaking, making them valuable for applications in sensing, imaging, and telecommunications.

Key characteristics of plasmonic metamaterials include:

  • Subwavelength Scalability: They can operate at scales smaller than the wavelength of light.
  • Tailored Optical Responses: Their design allows for precise control over light-matter interactions.
  • Enhanced Light-Matter Interaction: They can significantly increase the local electromagnetic field, enhancing various optical processes.

The ability to control light at this level opens up new possibilities in various fields, including nanophotonics and quantum computing.

Brushless Dc Motor

A Brushless DC motor (BLDC) is an electric motor that operates without the need for brushes, which are used in traditional DC motors to transfer electricity to the rotor. Instead, BLDC motors utilize electronic controllers to manage the current flow, which results in reduced wear and tear, increased efficiency, and a longer lifespan. The rotor in a brushless motor is typically equipped with permanent magnets, while the stator contains the windings that create a rotating magnetic field. This design allows for smoother operation, higher torque-to-weight ratios, and a wide range of speed control. Additionally, BLDC motors are commonly used in applications such as electric vehicles, drones, and computer cooling fans due to their high efficiency and reliability.

Higgs Boson Significance

The Higgs boson is a fundamental particle in the Standard Model of particle physics, crucial for understanding how particles acquire mass. Its significance lies in the mechanism it provides, known as the Higgs mechanism, which explains how particles interact with the Higgs field to gain mass. Without this field, particles would remain massless, and the universe as we know it—including the formation of atoms and, consequently, matter—would not exist. The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 confirmed this theory, with a mass of approximately 125 GeV/c². This finding not only validated decades of theoretical research but also opened new avenues for exploring physics beyond the Standard Model, including dark matter and supersymmetry.

Biostatistics In Epidemiology

Biostatistics in epidemiology is a crucial field that applies statistical methods to analyze and interpret data related to public health and disease patterns. It helps researchers understand the distribution and determinants of health-related states by providing tools for data collection, analysis, and interpretation. Key concepts include calculating incidence and prevalence rates, which help quantify how often diseases occur within specific populations over time. Moreover, biostatistics utilizes techniques such as regression analysis to explore relationships between risk factors and health outcomes, enabling epidemiologists to make informed decisions regarding disease prevention and control strategies. Overall, this discipline is essential for transforming raw health data into actionable insights that can improve public health initiatives.

Poisson Distribution

The Poisson Distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space, provided that these events happen with a known constant mean rate and independently of the time since the last event. It is particularly useful in scenarios where events are rare or occur infrequently, such as the number of phone calls received by a call center in an hour or the number of emails received in a day. The probability mass function of the Poisson distribution is given by:

P(X=k)=λke−λk!P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}P(X=k)=k!λke−λ​

where:

  • P(X=k)P(X = k)P(X=k) is the probability of observing kkk events in the interval,
  • λ\lambdaλ is the average number of events in the interval,
  • eee is the base of the natural logarithm (approximately equal to 2.71828),
  • k!k!k! is the factorial of kkk.

The key characteristics of the Poisson distribution include its mean and variance, both of which are equal to λ\lambdaλ. This makes it a valuable tool for modeling count-based data in various fields, including telecommunications, traffic flow, and natural phenomena.

Stepper Motor

A stepper motor is a type of electric motor that divides a full rotation into a series of discrete steps. This allows for precise control of position and speed, making it ideal for applications requiring accurate movement, such as 3D printers, CNC machines, and robotics. Stepper motors operate by energizing coils in a specific sequence, causing the motor shaft to rotate in fixed increments, typically ranging from 1.8 degrees to 90 degrees per step, depending on the motor design.

These motors can be classified into different types, including permanent magnet, variable reluctance, and hybrid stepper motors, each with unique characteristics and advantages. The ability to control the motor with a digital signal makes stepper motors suitable for closed-loop systems, enhancing their performance and efficiency. Overall, their robustness and reliability make them a popular choice in various industrial and consumer applications.