StudentsEducators

Hawking Radiation

Hawking Radiation is a theoretical prediction made by physicist Stephen Hawking in 1974, suggesting that black holes are not completely black but emit radiation due to quantum effects near their event horizon. According to quantum mechanics, particle-antiparticle pairs constantly pop into existence and annihilate each other in empty space. Near a black hole's event horizon, one of these particles can be captured while the other escapes, leading to the radiation observed outside the black hole. This process results in a gradual loss of mass for the black hole, potentially causing it to evaporate over time. The emitted radiation is characterized by a temperature inversely proportional to the black hole's mass, given by the formula:

T=ℏc38πGMkBT = \frac{\hbar c^3}{8 \pi G M k_B}T=8πGMkB​ℏc3​

where TTT is the temperature of the radiation, ℏ\hbarℏ is the reduced Planck's constant, ccc is the speed of light, GGG is the gravitational constant, MMM is the mass of the black hole, and kBk_BkB​ is Boltzmann's constant. This groundbreaking concept not only links quantum mechanics and general relativity but also has profound implications for our understanding of black holes and the nature of the universe.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Einstein Coefficient

The Einstein Coefficient refers to a set of proportionality constants that describe the probabilities of various processes related to the interaction of light with matter, specifically in the context of atomic and molecular transitions. There are three main types of coefficients: AijA_{ij}Aij​, BijB_{ij}Bij​, and BjiB_{ji}Bji​.

  • AijA_{ij}Aij​: This coefficient quantifies the probability per unit time of spontaneous emission of a photon from an excited state jjj to a lower energy state iii.
  • BijB_{ij}Bij​: This coefficient describes the probability of absorption, where a photon is absorbed by a system transitioning from state iii to state jjj.
  • BjiB_{ji}Bji​: Conversely, this coefficient accounts for stimulated emission, where an incoming photon induces the transition from state jjj to state iii.

The relationships among these coefficients are fundamental in understanding the Boltzmann distribution of energy states and the Planck radiation law, linking the microscopic interactions of photons with macroscopic observables like thermal radiation.

Perovskite Solar Cell Degradation

Perovskite solar cells are known for their high efficiency and low production costs, but they face significant challenges regarding degradation over time. The degradation mechanisms can be attributed to several factors, including environmental conditions, material instability, and mechanical stress. For instance, exposure to moisture, heat, and ultraviolet light can lead to the breakdown of the perovskite structure, often resulting in a loss of performance.

Common degradation pathways include:

  • Ion Migration: Movement of ions within the perovskite layer can lead to the formation of traps that reduce carrier mobility.
  • Thermal Decomposition: High temperatures can cause phase changes in the material, resulting in decreased efficiency.
  • Environmental Factors: Moisture and oxygen can penetrate the cell, leading to chemical reactions that further degrade the material.

Understanding these degradation processes is crucial for developing more stable perovskite solar cells, which could significantly enhance their commercial viability and lifespan.

Model Predictive Control Cost Function

The Model Predictive Control (MPC) Cost Function is a crucial component in the MPC framework, serving to evaluate the performance of a control strategy over a finite prediction horizon. It typically consists of several terms that quantify the deviation of the system's predicted behavior from desired targets, as well as the control effort required. The cost function can generally be expressed as:

J=∑k=0N−1(∥xk−xref∥Q2+∥uk∥R2)J = \sum_{k=0}^{N-1} \left( \| x_k - x_{\text{ref}} \|^2_Q + \| u_k \|^2_R \right)J=k=0∑N−1​(∥xk​−xref​∥Q2​+∥uk​∥R2​)

In this equation, xkx_kxk​ represents the state of the system at time kkk, xrefx_{\text{ref}}xref​ denotes the reference or desired state, uku_kuk​ is the control input, QQQ and RRR are weighting matrices that determine the relative importance of state tracking versus control effort. By minimizing this cost function, MPC aims to find an optimal control sequence that balances performance and energy efficiency, ensuring that the system behaves in accordance with specified objectives while adhering to constraints.

Okun’S Law And Gdp

Okun's Law is an empirically observed relationship between unemployment and economic growth, specifically gross domestic product (GDP). The law posits that for every 1% increase in the unemployment rate, a country's GDP will be roughly an additional 2% lower than its potential GDP. This relationship highlights the idea that when unemployment is high, economic output is not fully realized, leading to a loss of productivity and efficiency. Furthermore, Okun's Law can be expressed mathematically as:

ΔY=k−c⋅ΔU\Delta Y = k - c \cdot \Delta UΔY=k−c⋅ΔU

where ΔY\Delta YΔY is the change in GDP, ΔU\Delta UΔU is the change in the unemployment rate, kkk is a constant representing the growth rate of potential GDP, and ccc is a coefficient that reflects the sensitivity of GDP to changes in unemployment. Understanding Okun's Law helps policymakers gauge the impact of labor market fluctuations on overall economic performance and informs decisions aimed at stimulating growth.

Hurst Exponent Time Series Analysis

The Hurst Exponent is a statistical measure used to analyze the long-term memory of time series data. It helps to determine the nature of the time series, whether it exhibits a tendency to regress to the mean (H < 0.5), is a random walk (H = 0.5), or shows persistent, trending behavior (H > 0.5). The exponent, denoted as HHH, is calculated from the rescaled range of the time series, which reflects the relative dispersion of the data.

To compute the Hurst Exponent, one typically follows these steps:

  1. Calculate the Rescaled Range (R/S): This involves computing the range of the data divided by the standard deviation.
  2. Logarithmic Transformation: Take the logarithm of the rescaled range and the time interval.
  3. Linear Regression: Perform a linear regression on the log-log plot of the rescaled range versus the time interval to estimate the slope, which represents the Hurst Exponent.

In summary, the Hurst Exponent provides valuable insights into the predictability and underlying patterns of time series data, making it an essential tool in fields such as finance, hydrology, and environmental science.

Yield Curve

The yield curve is a graphical representation that shows the relationship between interest rates and the maturity dates of debt securities, typically government bonds. It illustrates how yields vary with different maturities, providing insights into investor expectations about future interest rates and economic conditions. A normal yield curve slopes upwards, indicating that longer-term bonds have higher yields than short-term ones, reflecting the risks associated with time. Conversely, an inverted yield curve occurs when short-term rates are higher than long-term rates, often signaling an impending economic recession. The shape of the yield curve can also be categorized as flat or humped, depending on the relative yields across different maturities, and is a crucial tool for investors and policymakers in assessing market sentiment and economic forecasts.