StudentsEducators

Heckscher-Ohlin

The Heckscher-Ohlin model, developed by economists Eli Heckscher and Bertil Ohlin, is a fundamental theory in international trade that explains how countries export and import goods based on their factor endowments. According to this model, countries will export goods that utilize their abundant factors of production (such as labor, capital, and land) intensively, while importing goods that require factors that are scarce in their economy. This leads to the following key insights:

  • Factor Proportions: Countries differ in their relative abundance of factors of production, which influences their comparative advantage.
  • Trade Patterns: Nations with abundant capital will export capital-intensive goods, while those with abundant labor will export labor-intensive goods.
  • Equilibrium: The model assumes that in the long run, trade will lead to equalization of factor prices across countries due to the movement of goods and services.

This theory highlights the significance of factor endowments in determining trade patterns and is often contrasted with the Ricardian model, which focuses solely on technological differences.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Poincaré Map

A Poincaré Map is a powerful tool in the study of dynamical systems, particularly in the analysis of periodic or chaotic behavior. It serves as a way to reduce the complexity of a continuous dynamical system by mapping its trajectories onto a lower-dimensional space. Specifically, a Poincaré Map takes points from the trajectory of a system that intersects a certain lower-dimensional subspace (known as a Poincaré section) and plots these intersections in a new coordinate system.

This mapping can reveal the underlying structure of the system, such as fixed points, periodic orbits, and bifurcations. Mathematically, if we have a dynamical system described by a differential equation, the Poincaré Map PPP can be defined as:

P:Rn→RnP: \mathbb{R}^n \to \mathbb{R}^nP:Rn→Rn

where PPP takes a point xxx in the state space and returns the next intersection with the Poincaré section. By iterating this map, one can generate a discrete representation of the system, making it easier to analyze stability and long-term behavior.

Fourier-Bessel Series

The Fourier-Bessel Series is a mathematical tool used to represent functions defined in a circular domain, typically a disk or a cylinder. This series expands a function in terms of Bessel functions, which are solutions to Bessel's differential equation. The general form of the Fourier-Bessel series for a function f(r,θ)f(r, \theta)f(r,θ), defined in a circular domain, is given by:

f(r,θ)=∑n=0∞AnJn(knr)cos⁡(nθ)+BnJn(knr)sin⁡(nθ)f(r, \theta) = \sum_{n=0}^{\infty} A_n J_n(k_n r) \cos(n \theta) + B_n J_n(k_n r) \sin(n \theta)f(r,θ)=n=0∑∞​An​Jn​(kn​r)cos(nθ)+Bn​Jn​(kn​r)sin(nθ)

where JnJ_nJn​ are the Bessel functions of the first kind, knk_nkn​ are the roots of the Bessel functions, and AnA_nAn​ and BnB_nBn​ are the Fourier coefficients determined by the function. This series is particularly useful in problems of heat conduction, wave propagation, and other physical phenomena where cylindrical or spherical symmetry is present, allowing for the effective analysis of boundary value problems. Moreover, it connects concepts from Fourier analysis and special functions, facilitating the solution of complex differential equations in engineering and physics.

Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma is a fundamental result in analysis that describes the behavior of Fourier coefficients of integrable functions. Specifically, it states that if fff is a Lebesgue-integrable function on the interval [a,b][a, b][a,b], then the Fourier coefficients cnc_ncn​ defined by

cn=1b−a∫abf(x)e−inx dxc_n = \frac{1}{b-a} \int_a^b f(x) e^{-i n x} \, dxcn​=b−a1​∫ab​f(x)e−inxdx

tend to zero as nnn approaches infinity. This means that as the frequency of the oscillating function e−inxe^{-i n x}e−inx increases, the average value of fff weighted by these oscillations diminishes.

In essence, the lemma implies that the contributions of high-frequency oscillations to the overall integral diminish, reinforcing the idea that "oscillatory integrals average out" for integrable functions. This result is crucial in Fourier analysis and has implications for signal processing, where it helps in understanding how signals can be represented and approximated.

Exciton Recombination

Exciton recombination is a fundamental process in semiconductor physics and optoelectronics, where an exciton—a bound state of an electron and a hole—reverts to its ground state. This process occurs when the electron and hole, which are attracted to each other by electrostatic forces, come together and annihilate, emitting energy typically in the form of a photon. The efficiency of exciton recombination is crucial for the performance of devices like LEDs and solar cells, as it directly influences the light emission and energy conversion efficiencies. The rate of recombination can be influenced by various factors, including temperature, material quality, and the presence of defects or impurities. In many materials, this process can be described mathematically using rate equations, illustrating the relationship between exciton density and recombination rates.

Market Failure

Market failure occurs when the allocation of goods and services by a free market is not efficient, leading to a net loss of economic value. This situation often arises due to various reasons, including externalities, public goods, monopolies, and information asymmetries. For example, when the production or consumption of a good affects third parties who are not involved in the transaction, such as pollution from a factory impacting nearby residents, this is known as a negative externality. In such cases, the market fails to account for the social costs, resulting in overproduction. Conversely, public goods, like national defense, are non-excludable and non-rivalrous, meaning that individuals cannot be effectively excluded from their use, leading to underproduction if left solely to the market. Addressing market failures often requires government intervention to promote efficiency and equity in the economy.

Quantum Dot Exciton Recombination

Quantum Dot Exciton Recombination refers to the process where an exciton, a bound state of an electron and a hole, recombines to release energy, typically in the form of a photon. This phenomenon occurs in semiconductor quantum dots, which are nanoscale materials that exhibit unique electronic and optical properties due to quantum confinement effects. When a quantum dot absorbs energy, it can create an exciton, which exists for a certain period before the electron drops back to the valence band, recombining with the hole. The energy released during this recombination can be described by the equation:

E=h⋅fE = h \cdot fE=h⋅f

where EEE is the energy of the emitted photon, hhh is Planck's constant, and fff is the frequency of the emitted light. The efficiency and characteristics of exciton recombination are crucial for applications in optoelectronics, such as in LEDs and solar cells, as they directly influence the performance and emission spectra of these devices. Factors like temperature, quantum dot size, and surrounding medium can significantly affect the recombination dynamics, making this a vital area of study in nanotechnology and materials science.