StudentsEducators

Hicksian Demand

Hicksian Demand refers to the quantity of goods that a consumer would buy to minimize their expenditure while achieving a specific level of utility, given changes in prices. This concept is based on the work of economist John Hicks and is a key part of consumer theory in microeconomics. Unlike Marshallian demand, which focuses on the relationship between price and quantity demanded, Hicksian demand isolates the effect of price changes by holding utility constant.

Mathematically, Hicksian demand can be represented as:

h(p,u)=arg⁡min⁡x{p⋅x:u(x)=u}h(p, u) = \arg \min_{x} \{ p \cdot x : u(x) = u \}h(p,u)=argxmin​{p⋅x:u(x)=u}

where h(p,u)h(p, u)h(p,u) is the Hicksian demand function, ppp is the price vector, and uuu represents utility. This approach allows economists to analyze how consumer behavior adjusts to price changes without the influence of income effects, highlighting the substitution effect of price changes more clearly.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Goldbach Conjecture

The Goldbach Conjecture is one of the oldest unsolved problems in number theory, proposed by the Prussian mathematician Christian Goldbach in 1742. It asserts that every even integer greater than two can be expressed as the sum of two prime numbers. For example, the number 4 can be written as 2+22 + 22+2, 6 as 3+33 + 33+3, and 8 as 3+53 + 53+5. Despite extensive computational evidence supporting the conjecture for even numbers up to very large limits, a formal proof has yet to be found. The conjecture can be mathematically stated as follows:

∀n∈Z, if n>2 and n is even, then ∃p1,p2∈P such that n=p1+p2\forall n \in \mathbb{Z}, \text{ if } n > 2 \text{ and } n \text{ is even, then } \exists p_1, p_2 \in \mathbb{P} \text{ such that } n = p_1 + p_2∀n∈Z, if n>2 and n is even, then ∃p1​,p2​∈P such that n=p1​+p2​

where P\mathbb{P}P denotes the set of all prime numbers.

Metagenomics Assembly

Metagenomics assembly is a process that involves the analysis and reconstruction of genetic material obtained from environmental samples, such as soil, water, or gut microbiomes, without the need for isolating individual organisms. This approach enables scientists to study the collective genomes of all microorganisms present in a sample, providing insights into their diversity, function, and interactions. The assembly process typically includes several steps, such as sequence acquisition, where high-throughput sequencing technologies generate massive amounts of DNA data, followed by quality filtering to remove low-quality sequences. Once the data is cleaned, bioinformatic tools are employed to align and merge overlapping sequences into longer contiguous sequences, known as contigs. Ultimately, metagenomics assembly helps in understanding complex microbial communities and their roles in various ecosystems, as well as their potential applications in biotechnology and medicine.

Strouhal Number

The Strouhal Number (St) is a dimensionless quantity used in fluid dynamics to characterize oscillating flow mechanisms. It is defined as the ratio of the inertial forces to the gravitational forces, and it can be mathematically expressed as:

St=fLU\text{St} = \frac{fL}{U}St=UfL​

where:

  • fff is the frequency of oscillation,
  • LLL is a characteristic length (such as the diameter of a cylinder), and
  • UUU is the velocity of the fluid.

The Strouhal number provides insights into the behavior of vortices and is particularly useful in analyzing the flow around bluff bodies, such as cylinders and spheres. A common application of the Strouhal number is in the study of vortex shedding, where it helps predict the frequency at which vortices are shed from an object in a fluid flow. Understanding St is crucial in various engineering applications, including the design of bridges, buildings, and vehicles, to mitigate issues related to oscillations and resonance.

Quantum Well Absorption

Quantum well absorption refers to the process by which light is absorbed by a semiconductor material that incorporates quantum wells—thin layers of semiconductor material where charge carriers are confined in one dimension. These quantum wells create discrete energy levels due to the quantum confinement effect, allowing for unique optical properties. When light of an appropriate energy interacts with the quantum well, electrons can be excited from the valence band to the conduction band, leading to absorption. This phenomenon is particularly significant in optoelectronic devices, such as lasers and photodetectors, where the absorption characteristics can be finely tuned by adjusting the quantum well dimensions and materials. Quantum well absorption is essential for enhancing the efficiency and performance of these devices, as it enables the control of light-matter interactions at the nanoscale.

Trie-Based Indexing

Trie-Based Indexing is a data structure that facilitates fast retrieval of keys in a dataset, particularly useful for scenarios involving strings or sequences. A trie, or prefix tree, is constructed where each node represents a single character of a key, allowing for efficient storage and retrieval by sharing common prefixes. This structure enables operations such as insert, search, and delete to be performed in O(m)O(m)O(m) time complexity, where mmm is the length of the key.

Moreover, tries can also support prefix queries effectively, making it easy to find all keys that start with a given prefix. This indexing method is particularly advantageous in applications such as autocomplete systems, dictionaries, and IP routing, owing to its ability to handle large datasets with high performance and low memory overhead. Overall, trie-based indexing is a powerful tool for optimizing string operations in various computing contexts.

Single-Cell Rna Sequencing

Single-Cell RNA Sequencing (scRNA-seq) is a groundbreaking technique that enables the analysis of gene expression at the individual cell level. Unlike traditional RNA sequencing, which averages the gene expression across a population of cells, scRNA-seq allows researchers to capture the unique transcriptomic profile of each cell. This is particularly important for understanding cellular heterogeneity in complex tissues, discovering rare cell types, and investigating cellular responses to various stimuli.

The process typically involves isolating single cells from a sample, converting their RNA into complementary DNA (cDNA), and then sequencing this cDNA to quantify the expression levels of genes. The resulting data can be analyzed using various bioinformatics tools to identify distinct cell populations, infer cellular states, and map developmental trajectories. Overall, scRNA-seq has revolutionized our approach to studying cellular function and diversity in health and disease.