StudentsEducators

Hotelling’S Rule

Hotelling’s Rule is a principle in resource economics that describes how the price of a non-renewable resource, such as oil or minerals, changes over time. According to this rule, the price of the resource should increase at a rate equal to the interest rate over time. This is based on the idea that resource owners will maximize the value of their resource by extracting it more slowly, allowing the price to rise in the future. In mathematical terms, if P(t)P(t)P(t) is the price at time ttt and rrr is the interest rate, then Hotelling’s Rule posits that:

dPdt=rP\frac{dP}{dt} = rPdtdP​=rP

This means that the growth rate of the price of the resource is proportional to its current price. Thus, the rule provides a framework for understanding the interplay between resource depletion, market dynamics, and economic incentives.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Quantum Supremacy

Quantum Supremacy refers to the point at which a quantum computer can perform calculations that are infeasible for classical computers to achieve within a reasonable timeframe. This milestone demonstrates the power of quantum computing, leveraging principles of quantum mechanics such as superposition and entanglement. For instance, a quantum computer can explore multiple solutions simultaneously, vastly speeding up processes for certain problems, such as factoring large numbers or simulating quantum systems. In 2019, Google announced that it had achieved quantum supremacy with its 53-qubit quantum processor, Sycamore, completing a specific calculation in 200 seconds that would take the most advanced classical supercomputers thousands of years. This breakthrough not only signifies a technological advancement but also paves the way for future developments in fields like cryptography, materials science, and complex system modeling.

Optimal Control Riccati Equation

The Optimal Control Riccati Equation is a fundamental component in the field of optimal control theory, particularly in the context of linear quadratic regulator (LQR) problems. It is a second-order differential or algebraic equation that arises when trying to minimize a quadratic cost function, typically expressed as:

J=∫0∞(x(t)TQx(t)+u(t)TRu(t))dtJ = \int_0^\infty \left( x(t)^T Q x(t) + u(t)^T R u(t) \right) dtJ=∫0∞​(x(t)TQx(t)+u(t)TRu(t))dt

where x(t)x(t)x(t) is the state vector, u(t)u(t)u(t) is the control input vector, and QQQ and RRR are symmetric positive semi-definite matrices that weight the state and control input, respectively. The Riccati equation itself can be formulated as:

ATP+PA−PBR−1BTP+Q=0A^T P + PA - PBR^{-1}B^T P + Q = 0ATP+PA−PBR−1BTP+Q=0

Here, AAA and BBB are the system matrices that define the dynamics of the state and control input, and PPP is the solution matrix that helps define the optimal feedback control law u(t)=−R−1BTPx(t)u(t) = -R^{-1}B^T P x(t)u(t)=−R−1BTPx(t). The solution PPP must be positive semi-definite, ensuring that the cost function is minimized. This equation is crucial for determining the optimal state feedback policy in linear systems, making it a cornerstone of modern control theory

Stochastic Discount Factor Asset Pricing

Stochastic Discount Factor (SDF) Asset Pricing is a fundamental concept in financial economics that provides a framework for valuing risky assets. The SDF, often denoted as mtm_tmt​, represents the present value of future cash flows, adjusting for risk and time preferences. This approach links the expected returns of an asset to its risk through the equation:

E[mtRt]=1E[m_t R_t] = 1E[mt​Rt​]=1

where RtR_tRt​ is the return on the asset. The SDF is derived from utility maximization principles, indicating that investors require a higher expected return for bearing additional risk. By utilizing the SDF, one can derive asset prices that reflect both the time value of money and the risk associated with uncertain future cash flows, making it a versatile tool in asset pricing models. This method also supports the no-arbitrage condition, ensuring that there are no opportunities for riskless profit in the market.

Caratheodory Criterion

The Caratheodory Criterion is a fundamental theorem in the field of convex analysis, particularly used to determine whether a set is convex. According to this criterion, a point xxx in Rn\mathbb{R}^nRn belongs to the convex hull of a set AAA if and only if it can be expressed as a convex combination of points from AAA. In formal terms, this means that there exists a finite set of points a1,a2,…,ak∈Aa_1, a_2, \ldots, a_k \in Aa1​,a2​,…,ak​∈A and non-negative coefficients λ1,λ2,…,λk\lambda_1, \lambda_2, \ldots, \lambda_kλ1​,λ2​,…,λk​ such that:

x=∑i=1kλiaiand∑i=1kλi=1.x = \sum_{i=1}^{k} \lambda_i a_i \quad \text{and} \quad \sum_{i=1}^{k} \lambda_i = 1.x=i=1∑k​λi​ai​andi=1∑k​λi​=1.

This criterion is essential because it provides a method to verify the convexity of a set by checking if any point can be represented as a weighted average of other points in the set. Thus, it plays a crucial role in optimization problems where convexity assures the presence of a unique global optimum.

Kalman Smoothers

Kalman Smoothers are advanced statistical algorithms used for estimating the states of a dynamic system over time, particularly when dealing with noisy observations. Unlike the basic Kalman Filter, which provides estimates based solely on past and current observations, Kalman Smoothers utilize future observations to refine these estimates. This results in a more accurate understanding of the system's states at any given time. The smoother operates by first applying the Kalman Filter to generate estimates and then adjusting these estimates by considering the entire observation sequence. Mathematically, this process can be expressed through the use of state transition models and measurement equations, allowing for optimal estimation in the presence of uncertainty. In practice, Kalman Smoothers are widely applied in fields such as robotics, economics, and signal processing, where accurate state estimation is crucial.

Mosfet Threshold Voltage

The threshold voltage (VTHV_{TH}VTH​) of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is a critical parameter that determines when the device turns on or off. It is defined as the minimum gate-to-source voltage (VGSV_{GS}VGS​) necessary to create a conductive channel between the source and drain terminals. When VGSV_{GS}VGS​ exceeds VTHV_{TH}VTH​, the MOSFET enters the enhancement mode, allowing current to flow through the channel. Conversely, if VGSV_{GS}VGS​ is below VTHV_{TH}VTH​, the MOSFET remains in the cut-off region, where it behaves like an open switch.

Several factors can influence the threshold voltage, including the doping concentration of the semiconductor material, the oxide thickness, and the temperature. Understanding the threshold voltage is crucial for designing circuits, as it affects the switching characteristics and power consumption of the MOSFET in various applications.