StudentsEducators

Hysteresis Control

Hysteresis Control is a technique used in control systems to improve stability and reduce oscillations by introducing a defined threshold for switching states. This method is particularly effective in systems where small fluctuations around a setpoint can lead to frequent switching, which can cause wear and tear on mechanical components or lead to inefficiencies. By implementing hysteresis, the system only changes its state when the variable exceeds a certain upper threshold or falls below a lower threshold, thus creating a deadband around the setpoint.

For instance, if a thermostat is set to maintain a temperature of 20°C, it might only turn on the heating when the temperature drops to 19°C and turn it off again once it reaches 21°C. This approach not only minimizes unnecessary cycling but also enhances the responsiveness of the system. The general principle can be mathematically described as:

If T<Tlow→Turn ON\text{If } T < T_{\text{low}} \rightarrow \text{Turn ON}If T<Tlow​→Turn ON If T>Thigh→Turn OFF\text{If } T > T_{\text{high}} \rightarrow \text{Turn OFF}If T>Thigh​→Turn OFF

where TlowT_{\text{low}}Tlow​ and ThighT_{\text{high}}Thigh​ define the hysteresis bands around the desired setpoint.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Rational Expectations Hypothesis

The Rational Expectations Hypothesis (REH) posits that individuals form their expectations about the future based on all available information, including past experiences and current economic indicators. This theory suggests that people do not make systematic errors when predicting future events; instead, their forecasts are, on average, correct. Consequently, any surprises in economic policy or conditions will only have temporary effects on the economy, as agents quickly adjust their expectations.

In mathematical terms, if EtE_tEt​ represents the expectation at time ttt, the hypothesis can be expressed as:

Et[xt+1]=xt+1 (on average)E_t[x_{t+1}] = x_{t+1} \text{ (on average)}Et​[xt+1​]=xt+1​ (on average)

This implies that the expected value of the future variable xxx is equal to its actual value in the long run. The REH has significant implications for economic models, particularly in the fields of macroeconomics and finance, as it challenges the effectiveness of systematic monetary and fiscal policy interventions.

Kolmogorov Axioms

The Kolmogorov Axioms form the foundational framework for probability theory, established by the Russian mathematician Andrey Kolmogorov in the 1930s. These axioms define a probability space (S,F,P)(S, \mathcal{F}, P)(S,F,P), where SSS is the sample space, F\mathcal{F}F is a σ-algebra of events, and PPP is the probability measure. The three main axioms are:

  1. Non-negativity: For any event A∈FA \in \mathcal{F}A∈F, the probability P(A)P(A)P(A) is always non-negative:

P(A)≥0P(A) \geq 0P(A)≥0

  1. Normalization: The probability of the entire sample space equals 1:

P(S)=1P(S) = 1P(S)=1

  1. Countable Additivity: For any countable collection of mutually exclusive events A1,A2,…∈FA_1, A_2, \ldots \in \mathcal{F}A1​,A2​,…∈F, the probability of their union is equal to the sum of their probabilities:

P(⋃i=1∞Ai)=∑i=1∞P(Ai)P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)P(⋃i=1∞​Ai​)=∑i=1∞​P(Ai​)

These axioms provide the basis for further developments in probability theory and allow for rigorous manipulation of probabilities

Markov Chains

Markov Chains are mathematical systems that undergo transitions from one state to another within a finite or countably infinite set of states. They are characterized by the Markov property, which states that the future state of the process depends only on the current state and not on the sequence of events that preceded it. This can be expressed mathematically as:

P(Xn+1=x∣Xn=y,Xn−1=z,…,X0=w)=P(Xn+1=x∣Xn=y)P(X_{n+1} = x | X_n = y, X_{n-1} = z, \ldots, X_0 = w) = P(X_{n+1} = x | X_n = y)P(Xn+1​=x∣Xn​=y,Xn−1​=z,…,X0​=w)=P(Xn+1​=x∣Xn​=y)

where XnX_nXn​ represents the state at time nnn. Markov Chains can be either discrete-time or continuous-time, and they can also be classified as ergodic, meaning that they will eventually reach a stable distribution regardless of the initial state. These chains have applications across various fields, including economics, genetics, and computer science, particularly in algorithms like Google's PageRank, which analyzes the structure of the web.

State Feedback

State Feedback is a control strategy used in systems and control theory, particularly in the context of state-space representation of dynamic systems. In this approach, the controller utilizes the current state of the system, represented by a state vector x(t)x(t)x(t), to compute the control input u(t)u(t)u(t). The basic idea is to design a feedback law of the form:

u(t)=−Kx(t)u(t) = -Kx(t)u(t)=−Kx(t)

where KKK is the feedback gain matrix that determines how much influence each state variable has on the control input. By applying this feedback, it is possible to modify the system's dynamics, often leading to improved stability and performance. State Feedback is particularly effective in systems where full state information is available, allowing the designer to achieve specific performance objectives such as desired pole placement or system robustness.

Diffusion Networks

Diffusion Networks refer to the complex systems through which information, behaviors, or innovations spread among individuals or entities. These networks can be represented as graphs, where nodes represent the participants and edges represent the relationships or interactions that facilitate the diffusion process. The study of diffusion networks is crucial in various fields such as sociology, marketing, and epidemiology, as it helps to understand how ideas or products gain traction and spread through populations. Key factors influencing diffusion include network structure, individual susceptibility to influence, and external factors such as media exposure. Mathematical models, like the Susceptible-Infected-Recovered (SIR) model, often help in analyzing the dynamics of diffusion in these networks, allowing researchers to predict outcomes based on initial conditions and network topology. Ultimately, understanding diffusion networks can lead to more effective strategies for promoting innovations and managing social change.

Superelastic Alloys

Superelastic alloys are unique materials that exhibit remarkable properties, particularly the ability to undergo significant deformation and return to their original shape upon unloading, without permanent strain. This phenomenon is primarily observed in certain metal alloys, such as nickel-titanium (NiTi), which undergo a phase transformation between austenite and martensite. When these alloys are deformed at temperatures above a critical threshold, they can exhibit a superelastic effect, allowing them to absorb energy and recover without damage.

The underlying mechanism involves the rearrangement of the material's crystal structure, which can be described mathematically using the transformation strain. For instance, the stress-strain behavior can be illustrated as:

σ=E⋅ϵ+σ0\sigma = E \cdot \epsilon + \sigma_{0}σ=E⋅ϵ+σ0​

where σ\sigmaσ is the stress, EEE is the elastic modulus, ϵ\epsilonϵ is the strain, and σ0\sigma_{0}σ0​ is the offset yield stress. These properties make superelastic alloys ideal for applications in fields like medical devices, aerospace, and robotics, where flexibility and durability are paramount.