StudentsEducators

Kaldor-Hicks

The Kaldor-Hicks efficiency criterion is an economic concept used to assess the efficiency of resource allocation in situations where policies or projects might create winners and losers. It asserts that a policy is deemed efficient if the total benefits to the winners exceed the total costs incurred by the losers, even if compensation does not occur. This can be expressed as:

Net Benefit=Total Benefits−Total Costs>0\text{Net Benefit} = \text{Total Benefits} - \text{Total Costs} > 0Net Benefit=Total Benefits−Total Costs>0

In this sense, it allows for a broader evaluation of economic outcomes by focusing on aggregate welfare rather than individual fairness. The principle suggests that as long as the gains from a policy outweigh the losses, it can be justified, promoting economic growth and efficiency. However, critics argue that it overlooks the distribution of wealth and may lead to policies that harm vulnerable populations without adequate compensation mechanisms.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Lstm Gates

LSTM (Long Short-Term Memory) networks are a special type of recurrent neural network (RNN) designed to learn long-term dependencies in sequential data. LSTM gates are crucial components that control the flow of information within the network. There are three primary gates in an LSTM cell:

  1. The Forget Gate: This gate determines which information from the cell state should be discarded. It uses a sigmoid activation function to output values between 0 and 1, where 0 means "completely forget" and 1 means "completely retain." Mathematically, it can be expressed as:
ft=σ(Wf⋅[ht−1,xt]+bf) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)ft​=σ(Wf​⋅[ht−1​,xt​]+bf​)
  1. The Input Gate: This gate decides which new information should be added to the cell state. It also uses a sigmoid function to control the input and a tanh function to create a vector of new candidate values. Its formulation is:
it=σ(Wi⋅[ht−1,xt]+bi) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)it​=σ(Wi​⋅[ht−1​,xt​]+bi​) C~t=tanh⁡(WC⋅[ht−1,xt]+bC) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)C~t​=tanh(WC​⋅[ht−1​,xt​]+bC​)
  1. The Output Gate: This gate determines what the next hidden state should be (i

Brushless Motor

A brushless motor is an electric motor that operates without the use of brushes, which are commonly found in traditional brushed motors. Instead, it uses electronic controllers to switch the direction of current in the motor windings, allowing for efficient rotation of the rotor. The main components of a brushless motor include the stator (the stationary part), the rotor (the rotating part), and the electronic control unit.

One of the primary advantages of brushless motors is their higher efficiency and longer lifespan compared to brushed motors, as they experience less wear and tear due to the absence of brushes. Additionally, they provide higher torque-to-weight ratios, making them ideal for a variety of applications, including drones, electric vehicles, and industrial machinery. The typical operation of a brushless motor can be described by the relationship between voltage (VVV), current (III), and resistance (RRR) in Ohm's law, represented as:

V=I⋅RV = I \cdot RV=I⋅R

This relationship is essential for understanding how power is delivered and managed in brushless motor systems.

Price Elasticity

Price elasticity refers to the responsiveness of the quantity demanded or supplied of a good or service to a change in its price. It is a crucial concept in economics, as it helps businesses and policymakers understand how changes in price affect consumer behavior. The formula for calculating price elasticity of demand (PED) is given by:

PED=% Change in Quantity Demanded% Change in Price\text{PED} = \frac{\%\text{ Change in Quantity Demanded}}{\%\text{ Change in Price}}PED=% Change in Price% Change in Quantity Demanded​

A PED greater than 1 indicates that demand is elastic, meaning consumers are highly responsive to price changes. Conversely, a PED less than 1 signifies inelastic demand, where consumers are less sensitive to price fluctuations. Understanding price elasticity helps firms set optimal pricing strategies and predict revenue changes as market conditions shift.

Kruskal’S Mst

Kruskal's Minimum Spanning Tree (MST) algorithm is a popular method used to find the minimum spanning tree of a connected, undirected graph. The primary goal of the algorithm is to connect all the vertices in the graph with the minimum total edge weight while avoiding cycles. The algorithm works by following these steps:

  1. Sort all edges in the graph in non-decreasing order of their weights.
  2. Start with an empty tree and add edges one by one, ensuring that no cycles are formed, until all vertices are connected.
  3. Use a disjoint-set data structure to efficiently manage and determine whether adding an edge would create a cycle.

The final output is a tree that connects all vertices with the least total edge weight, ensuring an optimal solution for problems involving network design, such as designing road systems or communication networks.

Adaptive Vs Rational Expectations

Adaptive expectations refer to the process where individuals form their expectations about future economic variables, such as inflation or interest rates, based on past experiences and observations. This means that people adjust their expectations gradually as new data becomes available, often using a simple averaging process. On the other hand, rational expectations assume that individuals make forecasts based on all available information, including current economic theories and models, and that they are not systematically wrong. This implies that, on average, people's predictions about the future will be correct, as they use rational analysis to form their expectations.

In summary:

  • Adaptive Expectations: Adjust based on past data; slow to change.
  • Rational Expectations: Utilize all available information; quickly adjust to new data.

This distinction has significant implications in economic modeling and policy-making, as it influences how individuals and markets respond to changes in economic policy and conditions.

Economies Of Scope

Economies of Scope refer to the cost advantages that a business experiences when it produces multiple products rather than specializing in just one. This concept highlights the efficiency gained by diversifying production, as the same resources can be utilized for different outputs, leading to reduced average costs. For instance, a company that produces both bread and pastries can share ingredients, labor, and equipment, which lowers the overall cost per unit compared to producing each product independently.

Mathematically, if C(q1,q2)C(q_1, q_2)C(q1​,q2​) denotes the cost of producing quantities q1q_1q1​ and q2q_2q2​ of two different products, then economies of scope exist if:

C(q1,q2)<C(q1,0)+C(0,q2)C(q_1, q_2) < C(q_1, 0) + C(0, q_2)C(q1​,q2​)<C(q1​,0)+C(0,q2​)

This inequality shows that the combined cost of producing both products is less than the sum of producing each product separately. Ultimately, economies of scope encourage firms to expand their product lines, leveraging shared resources to enhance profitability.