The Kalman Filter is an algorithm that provides estimates of unknown variables over time using a series of measurements observed over time, which contain noise and other inaccuracies. It operates on a two-step process: prediction and update. In the prediction step, the filter uses the previous state and a mathematical model to estimate the current state. In the update step, it combines this prediction with the new measurement to refine the estimate, minimizing the mean of the squared errors. The filter is particularly effective in systems that can be modeled linearly and where the uncertainties are Gaussian. Its applications range from navigation and robotics to finance and signal processing, making it a vital tool in fields requiring dynamic state estimation.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.