Majorana fermions are a class of particles that are their own antiparticles, meaning that they fulfill the condition , where is the charge conjugate of the field . This unique property distinguishes them from ordinary fermions, such as electrons, which have distinct antiparticles. Majorana fermions arise in various contexts in theoretical physics, including in the study of neutrinos, where they could potentially explain the observed small masses of these elusive particles. Additionally, they have garnered significant attention in condensed matter physics, particularly in the context of topological superconductors, where they are theorized to emerge as excitations that could be harnessed for quantum computing due to their non-Abelian statistics and robustness against local perturbations. The experimental detection of Majorana fermions would not only enhance our understanding of fundamental particle physics but also offer promising avenues for the development of fault-tolerant quantum computing systems.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.